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Introduction 

 
 

“One may wonder whether Adam Smith, were he working today, would not be a neuroeconomi[st]” 
Aldo Rustichini (2005). 

 
Neuroeconomics is the study of the biological microfoundations of economic cognition and economic 
behavior.  Biological microfoundations are neurochemical mechanisms and pathways, like brain regions, 
neurons, genes, and neurotransmitters.1  Economic cognition includes memory, preferences, emotions, 
mental representations, expectations, anticipation, learning, perception, information processing, inference, 
simulation, valuation, and the subjective experience of reward. In general, neuroeconomic research seeks 
to identify and test biologically microfounded models that link cognitive building blocks to economic 
behavior (Glimcher and Rustichni 2004, Camerer et al 2005, Bernheim 2008, Fehr and Rangel 2011, 
Camerer 2013).   

Neuroeconomics is a big tent.  Neuroeconomic research requires some curiosity about 
neurobiology, but neuroeconomic research does not necessarily require a departure from classical 
economic assumptions (e.g., rationality and dynamic consistency).  A classical economist would be a 
neuroeconomist if she wanted to study the biological mechanisms that influence optimal (or constrained 
optimal) decision-making.  For example, neuroeconomic research provides insights about the sources of 
preference heterogeneity. To be a neuroeconomist you need to take an interest in the operation of the 
brain, but you don’t need to prejudge its optimality.   

Neuroeconomics includes both theoretical modeling and empirical measurement.   At the 
moment, the majority of neuroeconomic research is focused on measurement.  However, this may change 
as a rapidly growing body of empirical knowledge provides discipline and catalyzes theoretical 
integration. 

Neuroeconomists use many different empirical methods, though neuroimaging is currently the 
dominant methodology– especially functional magnetic resonance imaging (fMRI).2  Neuroimaging 
technologies enable researchers to measure brain activity during problem solving, game-playing, choice, 
consumption, information revelation, and almost any conceivable type of economic activity. 
Neuroeconomic research also uses a diverse body of complementary data sources, including 
neuropharmacological exposures, cognitive load manipulations, response time measurements, eye-
tracking, single-neuron measurement, transcranial magnetic stimulation (TMS, a technology that 
temporarily alters/disrupts normal cognitive functioning in a localized region of the brain), genotyping, 
gene expression, analysis of patients with neural anomalies (e.g. brain lesions), and the study of animal 
models (e.g. rats or monkeys).   

There are five principal motivations for pursuing neuroeconomic research.   
First, some researchers are willing to study neuroscience for its own sake.  Few economists share 

this view, but it is not uncommon in the community of neuroeconomics researchers.  
Second, neuroeconomic research will likely provide a new way of imperfectly measuring human 

well-being.  For example, neural activity has been shown to correlate with affect (e.g., Davidson et al 
1990, 2000; Urry et al 2004), anticipation and receipt of reward (Schultz et al 1997; Schultz 1998; Platt 
and Glimcher 1999, Glimcher 2003; Knutson et al 2003; de Quervain et al 2004), and the related 
economic concept of revealed preferences (Plassmann et al 2007, Chib et al 2009, Harris et al 2011, 
Smith et al 2013).  Camerer (2007) writes that: 

 

                                                 
1 Neurotransmitters are molecules that carry neurochemical signals from one neuron to another. 
2 Other neuroimaging methods include magnetic resonance imaging (MRI), positron emission tomography (PET), 
and electroencephalograms (EEG) 



“Colander (2005) reminds us how interested classical economists were in measuring concepts 
like utility directly, before Pareto and the neoclassicals gave up.  Edgeworth dreamed of a 
“hedonimeter” that could measure utility directly; Ramsey fantasized about a 
“psychogalvanometer”; and Irving Fisher wrote extensively, and with a time lag due to 
frustration, about how utility could be measured directly. Edgeworth wrote: “…imagine an 
ideally perfect instrument, a psychophysical machine, continually registering the height of 
pleasure experienced by an individual…From moment to moment the hedonimeter varies; the 
delicate index now flickering with the flutter of the passions, now steadied by intellectual 
activity, low sunk whole hours in the neighborhood of zero, or momentarily springing up 
towards infinity…”  Doesn’t this sound like the language of a wannabe neuroeconomist? 
(except that it’s more flowery). Now we do have tools much like those Edgeworth dreamed 
of. If Edgeworth were alive today, would he be making boxes, or recording the brain?”3 

 
A precise hedonimeter is not available -- and probably never will be -- but neuroimaging techniques for 
imperfectly measuring hedonic states are available and are likely to dramatically improve with the 
resolution of imaging technologies.  However, it remains to be seen if such hedonic measurements will be 
accepted by economists.  It is possible that economists will prefer to exclusively use revealed preferences, 
leaving little or no role for correlated neural activity as a complementary signal of well-being.  
Nevertheless, it seems likely that neural activity and self-reports will eventually be accepted as 
measurements that complement standard methodologies for inferring well-being.  After all, revealed 
preference is itself a noisy measure of preferences (Luce 1959, McFadden 1980), so neural measures are 
likely to be useful supplementary covariates.4 

Third, neuroeconomics will serve as a catalyst for model development.  Neuroscientific data and 
concepts have inspired economists to develop many new economic models: e.g., Loewenstein (1996), 
Laibson (2001), Bernheim and Rangel (2004),  Loewenstein and O’Donoghue (2005), Fudenberg and 
Levine (2006), Caplin and Dean (2007), Brocas and Carrillo (2008a, 2008b, 2013, Krajbich and Rangel 
(2011). 

Fourth, neuroeconomics will provide a new, powerful way to test economic models which 
ambitiously specify both how choices depend on observables, and what computational mechanism leads 
to those choices. 5 Of course, few economic models make specific neural (or even cognitive) predictions. 
However, when economic models do make neural predictions, these predictions provide an additional 
domain for testing these theories (e.g., Frydman et al forthcoming). Theories that successfully explain 
both choice data and neural data have many advantages over theories that only make choice predictions. 
A theory that explains both types of data will inevitably predict some surprising new effects of treatment 
variables on choice (besides the usual suspects of prices, information and income). For example, Figner et 
al (2010) were motivated by neural fRMI evidence about the circuitry of time preference computations 
                                                 
3 See Colander (2007) and Edgeworth (1881 p. 101). 
4 Discrete choice models (e.g., Logit) have alternatively been interpreted as models with decision noise, 
like game-theoretic trembles, or models in which true utility has a stochastic component.  In fact, these 
perspectives are both sensible and mutually compatible.  
5 Becker and Murphy (1988) conjecture: “People get addicted not only to alcohol, cocaine, and cigarettes 
but also to work, eating, music, television, their standard of living, other people, religion, and many other 
activities.” Within their model, ‘addiction’ is simply adjacent complementarity in consumption (marginal 
utility is increasing the level of past consumption). However, to a neuroeconomist addiction to drugs is a 
biological process marked by changing synaptic function, changing reward prediction error, increasing 
tolerance, withdrawal upon cessation, craving, and sensitivity to environmental cue ‘triggers’ associated 
with past use (Laibson, 2001). So the economic and neuroeconomic approaches can be distinguished 
empirically. Becker and Murphy’s claim about the breadth of their theory could then be tested on a 
neuroeconomic basis (along with choices and prices).  
 



(McClure et al 2004) to predict that disruption of a specific brain region (right dlPFC) would cause people 
to act more impatiently. As hypothesized, disruption in that area did actually change choices between 
immediate and delayed actual monetary amounts. This type of predicted treatment effect could have not 
have come from a framework without neural detail.   

Fifth, neuroeconomics will improve our ability to predict behavior (Smith et al 2013, Rietveld et 
al 2013) and to design interventions that (i) change the behavior of others (e.g., Falk et al 2013, Berkman 
and Falk 2013), and, (ii) manage our own appetites and drives. Consumption of caffeinated coffee 
illustrates that the age of widespread biologically mediated self-management started long ago. 

This essay does not argue that economics must embrace neuroscience.  Economic models -- even 
psychologically informed economic models -- do not need neural foundations.  For example, the work of 
Daniel Kahneman has barely made contact with neural accounts of cognition (e.g., Kahneman 1993). 
Even Kahenman’s recent work on “system one” and “system two” cognition, only uses biology at a 
metaphorical level (Kahneman, 2011).  

More generally, there is no economic model that can only be derived with the benefit of a 
neuroscientific antecedent.  There is no choice-based theory that can only be studied with neuroscientific 
data.  However, neuroscience is useful because it can accelerate the pace of economic research.   

As a profession, economists are extremely adept at conjecturing detailed competing theories. For 
example, there are many different theories of negative reciprocity. Is the preference for punishing 
defectors reputation-driven?  Is punishment motivated by a reputation concern coupled with the implicit 
belief that we are always being watched, even in an “anonymous” laboratory experiment? Is punishment a 
knee-jerk response with evolutionary origins? Or do we get real instantaneous pleasure from punishing 
defectors?   Distinguishing these theories with field data, or experimental choices, is challenging, though 
not impossible. Using a combination of choice data and neural data helps us make these conceptual 
distinctions, revealing that pleasure is at least part of the equation (de Quervain et al 2004).   

This chapter reviews the literature in neuroeconomics, paying particular attention to experimental 
methods.  The paper is divided into six sections, which are modular and don’t necessarily need to be read 
sequentially.  Each section was drafted by a different expert. Section 1 discusses basic neurobiology, 
which is needed to understand the scientific questions and methodology (including measurement) used in 
neuroeconomics.  Section 2 discusses neuroscience methods, with emphasis on neuroimaging and the 
challenges of designing experiments for subjects inside scanners.  The rest of the chapter discusses four 
active topics of neuroeconomic research: Risk (Section 3); Intertemporal choice and self-regulation 
(Section 4); Social preferences (Section 5); Strategic behavior (Section 6). These do not span all parts of 
neuroeconomics, but they describe some areas of special interest to experimentalists in which progress is 
being made. 
 
 
 
 
 
 
  



1  Neurobiological Foundations  
 
Neuroeconomics reflects a reductionist approach to social science that rests on two premises. First, that 
explanatory systems for describing human choice behavior can be developed at neuroscientific, 
psychological and economic levels of analysis. Second, that there will be consistent and understandable 
mappings among these levels of explanation. If both of these assumptions are correct, then studies of 
choice and decision at any of these levels can be used to inform and constrain explanatory models 
generated at other levels.  
 
While the second of these premises remains controversial, it may be valuable to look to the history of the 
natural and physical sciences in assessing the likelihood that this will be validated by future empirical 
work. At the end of the 1800s a group of interdisciplinary scholars argued that quantum theory could 
provide a similar mapping between chemistry and physics which would allow for accelerated model 
development in both fields. The result was an enormously fertile period in the history of both of those 
disciplines and a permanent mapping between chemistry and physics. In the 1980s a similar trend could 
be observed in the relationship between biology and much of psychology. Only two decades later, just 
who is a neuroscientist and who is a psychologist can be very difficult to determine at a typical 
University. We believe that neuroeconomics may find itself today at the same crossroads. What this 
means for economics is that as these mappings are identified, a flood of algorithmic constraints from 
neuroscience will become available to economists. In a similar way, normative models and empirical 
behavioral models from economics will play a larger role in constraining neurobiological models. 
 
An important barrier to the importation of these constraints into economics, however, is a lack of 
knowledge about the brain and unfamiliarity with neuroscientific vocabulary. The pages that follow 
therefore provide a basic primer on the vertebrate brain. For the neophyte interested in learning more 
about the brain we recommend an introductory undergraduate text like Rosenzweig’s “Biological 
Psychology”. For advanced material the reader is referred to standard graduate texts: “Principles of 
Neural Science” or “Fundamental Neuroscience”.  
 

The Cellular Structure of the Brain 
 
Like all organs the vertebrate brain is composed of cells, self-sustaining units that are typically about a 
thousandth of an inch in diameter. The brain is composed of two types of cells, called glia and neurons. 
Glia are support cells that play structural and metabolic roles in the maintenance of the brain. It is 
neurons, or nerve cells, that perform computations and serve as the foundation for mental function. 
Figure 1 shows a cartoon of a fairly typical neuron. The large bulbous center of the cell, or cell body, 
contains all of the machinery necessary to keep the cell alive. Extending from the cell body are long thin 
processes called dendrites. These extensions serve as the inputs to a nerve cell, the structural mechanism 
by which signals from other nerve cells are mathematically integrated and analyzed during neural 
computation. Also extending from the cell body is a single long thin process called the axon. The axon 
serves as an output wire for the nerve cell. Axons may be quite long, in rare cases almost a meter, and 
nerve cells use these axons to broadcast the outputs of their dendritic computation to other nerve cells, 
even if those recipient cells are quite distant. They accomplish this connection to other nerve cells at the 
end of the axon, the tips of the axons making physical contact with the dendrites of other neurons. The 
cellular specialization at this contact is called the nerve terminal. The nerve ending-to-dendrite junction 
allows a receiving neuron to add, subtract, multiply, divide or even mathematically integrate the many 
continuous real-valued signals that its dendrites receive from the nerve terminals that impinge upon it. 
 
To better understand this process, however, we next have to understand what it means for a nerve cell to 
send a ‘signal’ to another nerve cell. Formally, signals in nerve cells are called action potentials (or more 



colloquially spikes) and they reflect a rather simple electrochemical process that is now well understood. 
Like all cells, nerve cells are surrounded by membranes that restrict the flow of chemicals both into and 
out of the cell (Figure 2). These membranes particularly restrict the flow of the positively charged atom 
sodium (the active ingredient in table salt). The critical feature that this restriction of flow creates is a 
stable equilibrium between two physico-chemical forces. The high concentration of sodium outside the 
cell sets up a diffusive force which acts to equalize the concentration of sodium inside and outside the cell 
by driving sodium inside the cell. In opposition, an electrical force (involving positively charged atoms, 
which are overrepresented inside the cell at equilibrium) seeks to distribute the electrical charge equally 
by driving sodium outside the cell. Because of the construction of the membrane, these two forces reach a 
stable equilibrium state at which the inside carries a negative charge with regard to the outside (a measure 
of the electrical force) which is opposed by an equal and opposite diffusive force. This equilibrium state is 
called the resting potential, and perturbations of this equilibrium induced by transient changes in the 
strength of the diffusive force serve as the conceptual centerpiece for all neural computation. 
 
These perturbations turn out to be quite easy to induce. This is accomplished by opening and closing 
mechanical channels that span the membrane. Consider an openable ion channel (Figure 3), a hollow 
tube spanning the membrane with a hole that can be opened and which when opened permits a single 
sodium atom to cross the membrane. When a few hundred of these channels open on a dendrite the result 
is that the dendrite is driven to a new equilibrium state by the movement of sodium, by diffusion, into the 
cell. This new equilibrium, one associated with a stronger diffusive forced created by the open channels, 
is characterized by a commensurate change in the electrical force, in this case a shift to a higher voltage 
inside the cell. What opens these tiny ion channels? The answer is that chemicals, called 
neurotransmitters, transiently open channels of this type located on the dendrites. Sodium channels are 
not, however, the only type of channel located on the dendrites. Other classes of channels can cause the 
local voltage to transiently shift to a lower voltage equilibrium. By mixing and matching both channel 
types and neurotransmitters we can therefore construct a kind of instantaneous mechanical adding 
machine. One type of neurotransmitter opens voltage increasing channels. The more of this 
neurotransmitter, the more open channels, the higher the voltage in that dendrite. Another type of 
neurotransmitter opens voltage decreasing channels. The physical membrane reacts by effectively 
averaging these electrical fields and the instantaneous electrical field across the entire dendrite is thus an 
equilibrium state in which the voltage is a (surprisingly linear) readout of the sum of the neuron’s inputs.  
 
The next step in neural computation within a single neuron involves a nonlinear threshold. The ion 
channels along the axon, it turns out, are different from those in the dendrites. These ion channels open to 
allow sodium to enter the cell freely whenever the voltage near them exceeds a fixed threshold. Consider 
now what this means. Whenever the dendritic ‘computation’ (the summed voltage in a region of the cell) 
exceeds a fixed threshold, these voltage-gated sodium channels all open, thus driving the entire cell to a 
new equilibrium that has a much higher voltage. What this means in practice is that once the voltage of 
the cell is high enough to trigger the opening of voltage-sensitive channels in the axon near to the 
dendrites, those channels open. This in turn drives the voltage even higher up. That in turn activates 
adjacent channels in the axon that although far away from the dendrite are subsequently opened by this 
more proximal shift in the equilibrium voltage. What happens, thus, is a wave of equilibrium shifts, 
realized as a change in the electrical state of the cell, which propagates down the axon to the axon 
terminal. This wave of activation is the action potential and importantly it is always of the same voltage – 
the one specified by the equilibrium state induced by these voltage sensitive channels. It is this 
mechanism that allows a cell to signal to the nerve endings, which may be a meter away, that the voltage 
of the cell body has crossed a specified threshold. 
 
It is critical to recognize, however, that we have transformed a continuous and largely linear variable, 
membrane voltage, into a discrete single event. How then can nerve cells communicate the kinds of 
continuous real numbers that we need for meaningful computation? The answer is that the action potential 



itself is automatically reset after about a thousandth of a second. A second action potential is then 
generated if the voltage in the dendrites remains above threshold. Because of the mechanics of the 
channels, the higher the voltage in the dendrite the sooner this second action potential occurs. The result 
is that the rate of action potential generation, the frequency with which action potentials are generated, is 
a roughly linear function of dendritic voltage. In practice this means that the number of action potentials 
generated per second by a cell is the continuous variable onto which any neural calculation must be 
mapped. This variable ranges from about 0 to 100 action potentials per second (or Hertz, the units of 
frequency) for a typical neuron. Note that this is a positively valued range, which imposes some 
interesting computational constraints. It means that for computations where zero is a unique and fully 
cardinal object (for example when setting muscle tone which really does have a unique and cardinal zero) 
it is often the case that the brain uses pairs of neurons to encode separately positive [+ ] and negative [

− ] segments of the real number line. In other cases where notions of a ‘zero-point’ lack uniqueness it is 
often observed that the firing rate of a single neuron maps some segment of  that spans the zero-point, 
for example by mapping some arbitrary firing rate like 50Hz to zero. Both encoding techniques have been 
observed in the mammalian brain for different subsystems. The range is also, in practice, finite because of 
limited precision at several points in the system. This can be overcome by dedicating more than one 
neuron to the encoding of a single real number, a technique also widely observed in the vertebrate 
nervous system.6 
 
What happens to these action potentials next, after they reach the nerve terminal? The answer is that each 
action potential triggers the release of a quantity of neurotransmitter from each terminal (Figure 4). This 
neurotransmitter then diffuses across a truly tiny space, called a synapse, that separates each nerve 
terminal from the dendrite with which it communicates. Lying at the far side of the synapse, on the 
surface of the dendrite, are the same ion channels that we encountered when discussing dendritic function 
above. These were the ion channels that were opened or closed by neurotransmitter molecules. These 
neurotransmitter molecules thus serve to open ion channels in those dendrites causing the membrane of 
the post-synaptic cell to change voltage. This completes the passage of the signal through a single neuron 
and initiates a new computation at the next neuron. Neuronal computation is thus incremental and serial, 
with chains or networks of neurons performing parallel mini-computations in continuous time. 
 
At a micro-scale, networks of neurons can be viewed as largely linear devices that can perform essentially 
any specifiable computation either singly or in groups. And a large segment of the theorists and 
empiricists in neuroscience devote their time to the study of neural computation at this level. Neuronal 
recording studies conducted by neuroeconomists in monkeys take advantage of this fact by measuring, 
one neuron at a time, the rate at which action potentials are generated as a function of either the options 
that a monkey faces or the choices that he makes. This allows them to test the hypothesis, for example, 
that to within a linear transformation the neurons of a particular brain region encode in their spike rate the 
expected utility of an option. Of course this observation implies that the kind of stable mapping rules that 
link chemistry and physics seem to reach from economic theory all the way down to a single neuron 
function, a point that this chapter seeks to make clear. 
 

                                                 
6 Note how obviously cardinal and linear is this discussion of firing rates as encoding schemes. To a neurobiologist, 
who is essentially an algorithmic engineer, this is the most natural way to imagine firing rates. Perhaps somewhat 
surprisingly, there is also a huge amount of data to support the conclusion that firing rates actually are linear with 
important environmental variables. Perhaps even more surprisingly, the activity level of a given neuron during rest 
actually does correspond, in most cases, to the default state of the variable being encoded. One simple example of 
this is the representation of the speed of a moving object in the visual system. Within a fixed range of speeds for 
each neuron, firing rates in cortical area MT are highly linear encoders of this highly abstract property with almost 
all variance accounted for by the Poisson structure of fixed neuronal noise (Maunsell and VanEssen J Neurophys 
1983, Tolhurst et al 1983).  



A final point that needs to be made before we leave the study of neurons is that all of these processes - the 
generation of action potentials, the release of neurotransmitter, and the maintenance of dendritic electro-
chemical equilibrium - are metabolically costly. All of these processes consume energy in the form of 
oxygen and sugars. In fact, this is one of the most costly metabolic processes in the human body. Over 
20% of the oxygen and sugar we employ as humans is used in the brain, even though the brain represents 
only about 3% of the mass of the human body. So it is important to remember that more neural activity 
means more metabolic cost. This has two important implications. First, minimizing this activity is a 
central feature of the cost functions that lie behind neural computation. Second, this metabolic demand is 
what is measured in most human brain imaging (brain scanning) experiments. To the degree that this 
metabolic cost is a linear function of neuronal activity, measurements of metabolic state reflect the 
underlying neural activity. 
 

From Neurons to Networks 
 
Studies of single neurons do show evidence of a clear mapping between economic theory and brain 
function, but it is also critical to understand the size of the human brain when one is considering the 
function of single neurons. The human brain is composed of about a hundred billion neurons. The average 
neuron receives, on its dendrites, inputs from hundreds of other neurons and in turn makes synaptic 
contacts at its nerve endings with hundreds of other neurons. If we were to imagine that 10^6 neurons 
encoded (for example) expected utility, and that those neurons were randomly distributed in the brain, 
then it would in practice be impossible to find those neurons if one was looking for them one at a time. 
The existence of a second hidden cost function, however, solves this problem for neuroscientists. It turns 
out that axons are particularly costly to maintain and the result is that evolution has shaped the human 
brain in a way that minimizes total axonal length. To achieve axonal minimization, two principles seem to 
be widely adhered to in neural architecture. Neurons engaged in related computations tend to be grouped 
closely together and communication between distant groups of neurons tends to employ highly efficient 
coding schemes that use a minimum number of axons.  
 
These ex ante constraints, and a wealth of empirical evidence, now support the conclusion that the brain is 
a set of modular processing stages. Discrete regions of the brain typically perform specific computations 
and pass their computational outputs in a highly compact form to other brain areas for additional 
processing. We need to maintain, however, a clear mapping between an analysis at the level of neurons 
and an analysis at the level of brain areas. Single neuron studies of decision making in monkeys are an 
example of this kind of mapping. Those studies often measure the rate of action potential generation in 
neurons that serve as outputs from brain areas and as such provide information at both of these levels of 
analysis. 
 
Both the human and monkey brain can be divided into three main divisions based on converging evidence 
from developmental, genetic, physiological and anatomical sources. These three divisions are, front to 
back, the telencephalon, the diencephalon and the brainstem (Figure 5). For the purposes of 
neuroeconomic study the telencephalon , which all vertebrates possess in some form, will be our focus. 
 
The telencephalon itself can be divided into two main and highly distinct segments, the cerebral cortex 
and the basal ganglia. Of those two, the more evolutionarily ancient structure is the basal ganglia. 
 
The basal ganglia are composed of a number of sub-regions in humans that lie beneath the cerebral 
cortex. There are five of these regions that are most important. The caudate and putamen together are 
known as the striatum. The striatum, and in particular the lower, or ventral, striatum is of particular 
interest because activity here appears to encode the values of goods or options either present in choice 
sets under current consideration, which have been selected from choice sets, or which are actively being 
consumed (Levy et al. 2011). These areas receive extensive inputs from the frontal cortex and send almost 



all of their outputs to two other nuclei of the basal ganglia, the globus pallidus and the substantia nigra 
pars reticulata. Speaking generally, the caudate and putamen are the main input areas of the basal ganglia 
and the globus pallidus and substantia nigra pars reticulata are the main output areas. These output areas 
project, through a dedicated relay, back to the frontal cortex (the frontal region of the cerebral cortex). 
The core circuit of the basal ganglia is thus a loop that takes information from the frontal cortex and 
passes it back to the frontal cortex after further processing. The one remaining critical region of the basal 
ganglia is composed of the dopaminergic neurons of the ventral tegmental area and the substantia nigra 
pars compacta. These dopaminergic neurons receive projections from the output nuclei of the basal 
ganglia as well as from many other areas and project both to the frontal cortex and the input nuclei of the 
basal ganglia. The dopamine neurons have been of particular interest because there is now overwhelming 
evidence that these neurons encode a reward prediction error signal appropriate for error-correction based 
learning (e.g., Caplin et al 2010). 
 
The cerebral cortex of the telencephalon is much larger than the basal ganglia in most primate species and 
is surprisingly homogenous in structure. Essentially all cerebral cortex is a 6-layered sheet (Figure 6) 
with each of the layers showing very specific functional specializations. Layer 5, for example, always 
contains a specific class of cells that send axons out of the local region of cortex in which they are located 
to make connections with other distant regions in the cortex. This 6-layered structure also means that the 
cortex is, at least structurally, a sheet like device. This is obvious on gross inspection. The crinkled 
surface of the brain reveals that the cerebral cortex is a folded sheet that has been crumpled up to fit inside 
the skull. Beneath this folded sheet are dense runs of axons for interconnections between different places 
in the cortex. The sheet itself, composed largely of cell bodies, is referred to as grey matter. The dense 
runs of axons beneath it are referred to as white matter. For hundreds of years this sheet has been divided 
into 4-5 main subdivisions. These are not functional subdivisions but rather names of convenience. These 
main divisions are the frontal, parietal, occipital, and temporal lobes. Until recently the insula was 
considered an independent fifth lobe although it is now often referred to as part of the frontal lobe. 
 
Despite this casual division into lobes, until the twentieth century it was widely believed that the cerebral 
cortex was homogenous not only with regard to its anatomy but also with regard to its function. That 
conclusion was successfully challenged when it was demonstrated that sub-areas in the cortex served 
quite specific functional roles. Ultimately, this led the famous German Neurologist Corbinian Brodmann 
to conclude that there are tiny differences between the anatomical structures of different regions of the 
cortex, differences so small that they had been overlooked in the preceding two centuries. Based on these 
differences Brodmann divided the cortex into a large number of numerically labeled sub-areas and 
cortical sub-areas. 
 
The principal Brodmann-area subdivisions, at a functional level, divide the cortex into a series of areas 
with known interconnectivities and discrete functions. Both of these properties are important. The 
connectivities are surprisingly sparse in the sense that each cortical area connects with only a few other 
areas, and these connections are identical across normal individuals. The functions are often surprisingly 
discrete and now very well defined for some areas. 
 
One final area that deserves mention anatomically is the amygdala. The amygdala is a portion of the 
telencephalon that is not classically considered part of the cerebral cortex or the basal ganglia. The 
amygdala is of particular interest because a wealth of studies now suggest that the psychological state of 
fear can be mapped to activation of the amygdala. Generalizing from these observations has led to the 
suggestion that psychologically defined emotional states may well map to neurally localizable activity. 
The good news is that this seems to be the case for fear. The bad news is that there is no compelling 
evidence, as yet, for such specific localization of other psychologically defined emotions. 
 
 



Summary of Neurobiology 
 
For an economist interested in neuroscience there are two central messages about the foundations of 
neuroscience. The first is that there seem to be clear and consistent mappings between events at the neural 
level and events at the behavioral level. The second, which follows from the first, is that the details of 
neurobiological function provide valuable constraints for economic theories. What this points out in turn 
is the critical need for basic neurobiological literacy amongst neuroeconomists. 
 
 
 
  



Figure 1: A Neuron 
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Figure 2: A Membrane 
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Figure 3: An Ion Channel 
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Figure 4: A synapse 
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Figure 5: Brains 
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2:  Functional MRI (fMRI): A Window into the Working Brain  
An understanding of the human brain remains one of the greatest challenges of science.  A primary 
impediment to meeting this challenge has been the ability to measure brain activity associated with 
mental function. Methods for non-invasively measuring brain electrical activity in humans, or 
electroencelphalography (EEG), have been available for over 80 years (Berger, 1929).  While these have 
produced useful information about the timing of some neural processes, the inhomogeneity of electrical 
conductivity across the brain limits their spatial resolution.  Alternative methods that provide better 
spatial resolution are available, such as magnetoencephalography, or MEG  (Hämäläinen et al., 1993).  
However, like EEG, these are restricted to measuring activity in the cerebral cortex (where there are 
sufficient numbers of geometrically aligned cells to produce a coherent signal), and thus miss the 
operation of deeper structures thought to be involved in reward processing (e.g., basal ganglia and 
brainstem neuromodulatory nuclei). 

To date, the most successful efforts to measure brain activity take a less direct approach than recording 
neural activity from the scalp.  These neuroimaging methods exploit an observation first made by Roy 
and Sherrington in 1890 (Roy & Sherrington, 1890): that neural activity is associated with increased 
blood flow to the active brain region.  Although the precise mechanisms that mediate the relationship 
between neural activity and blood flow remain incompletely understood, this relationship has been used 
successfully to measure regional brain activity.  The first of these methods to be developed involved the 
injection of radiotracers into the blood stream, and the measurement of their distribution within the brain 
while the subject is engaged in mental activity (Gado et al., 1975).  A major advantage in these methods, 
including positron emission tomography (PET) and single positron emission computed tomography 
(SPECT), is that they can be used to radioactively label agents that selectively bind specific 
neurotransmitter receptors.  This has been especially useful in evaluating the function of neurotransmitter 
systems in psychiatric disorders. However, safety limitations on exposure to radioactivity restrict the 
spatial resolution of the brain activation (about 5mm) and the temporal precision of the measurement (one 
longitudinal observation can be taken per minute).   

Another approach to measuring activity-related changes in blood flow uses optical recordings, which 
exploit signatures in the spectrum of light scattered by blood-born hemoglobin.  Non-invasive optical 
recordings use near-infrared spectroscopy (NIRS;  Villringer et al., 1993) since light in this part of the 
spectrum penetrates the scalp.  Although the high temporal resolution, relatively low cost, and portability 
of this method make it useful for some specialized applications (e.g., studying infant brains), it is still 
limited by low sensitivity and spatial resolution.  By far, the most common approach currently used to 
measure human brain activity is functional MRI (fMRI). 

Functional MRI and the BOLD signal 

The ability of MRI to detect changes in blood flow was first reported by three separate laboratories about 
twenty years ago, in 1992 (Bandettini et al., 1992; Kwong et al., 1992;  Ogawa et al., 1992). This method 
relies on two fortuitous phenomena of physics and physiology:  1) oxygenated and deoxygenated 
hemoglobin molecules have distinguishable effects on the signals detected using magnetic resonance 
imaging (MRI); and 2) increases in blood flow to areas of increased neural activity appear to exceed the 
demands of aerobic metabolism, paradoxically increasing the density of oxygenated hemoglobin.  
Exploiting these effects, MRI can be used to detect a blood oxygen level dependent (BOLD) signal that is 
sensitive to relative changes in local blood flow.  This, in turn, can be used to index neural activity.  MRI 
can also be used to measure neural activity in other ways (e.g., using arterial spin labeling, or ASL, to 
directly measure perfusion; Williams et al., 1992)  and to map anatomy (e.g., diffusor tension imaging, or 
DTI, to image fiber pathways; Chien et al, 1990;  Le Bihan, 1995).  However, MRI using the BOLD 



signal is by far the most common technique used to learn about brain function.  This is most commonly 
referred to as functional MRI, or fMRI. 

Because the BOLD signal reflects changes in blood flow rather than neural activity directly, it is limited 
in several ways.  Most importantly, it responds slowly to neural activity, first appearing about 2 secs after 
a triggering event, peaking at about 4-6 seconds, and abating after about 10 seconds.  While highly 
sensitive to even very brief neural events (lasting as little as 500 msec), the BOLD signal reflects these 
events in a delayed and diffused manner.  Analyses try to compensate for this nonlinear effect (by 
incorporating models of the typical hemodynamic response function, or HRF).  However, these rely on 
assumptions that are not always accurate or generalizable, and compromise precision.  Because it reflects 
hemodynamic changes rather than direct neural activity, the BOLD signal is also limited in spatial 
resolution (with a current lower limit of about 1 mm). 

These limitations notwithstanding, the method has proven remarkably successful in identifying neural 
activity associated with a wide array of mental processes.  These range from visual perception and the 
control of overt motor actions, to subtler intervening ones such as recollection, decision making, inference 
and emotional evaluation.  The ability of fMRI to localize such activity has been validated by comparing 
results with those from complementary methods, including other imaging methods, as well as 
simultaneous recordings of the BOLD signal and direct electrical recordings in non-human primates 
(Disbrow et al., 2000; Logothetis et al., 2001) and in human patients with implanted electrodes (Mukamel 
et al, 2005).  Because it is non-invasive, and owing to the wide availability of MRI scanners, fMRI has 
become a mainstay of research on human brain function. 

Design considerations 

Scanning parameters.  Several factors govern the effectiveness of an fMRI study, ranging from pulse 
sequence design (how the MR scanner is programmed) and the alignment of scans within the brain, to the 
design of the behavioral paradigm used to engage mental functions of interest.  Choice of pulse sequence 
has a strong impact on the nature and quality of the data acquired, but is beyond the scope of this article 
(the interested reader is directed to Haacke, Brown, Thompson & Venkatesan, 1999).  However, it is 
worth noting that a typical study involves longitudinal samples from about 10,000-30,000 brain loci 
(about 1-3cc each) taken every two seconds for about 45 minutes.  It is also worth noting that both pulse 
sequence design and scan placement can affect signal drop out (known as “susceptibility artifact”).  This 
occurs in brain areas that are near air passages (such as the sinuses), including ones of particular relevance 
to decision making and valuation such as the orbitofrontal cortex (lower surfaces of the frontal lobes) and 
amygdala (along the inner surface of the temporal lobes).  Scans can be tuned to compensate for these 
effects, but this can sacrifice coverage or sensitivity in other brain areas (akin to the problem of 
backlighting in photography).  Newer hardware designs which address this problem, such as parallel 
imaging with phased array coils,  are beginning to emerge (akin to high dynamic range [HDR] imaging in 
photography) and are now becoming increasingly commonplace. 

Experimental design and the subtractive method.  Equal in importance to scanning considerations is the 
behavioral design of the experiment.  The most powerful studies use within subject comparisons, enabling 
the researcher to control for person fixed effects. The most common approach to identifying brain areas 
associated with a particular cognitive function uses within-subject subtractive logic (Donders, 
1868/1969):  Contrast an “experimental condition” in which the participant is performing a task of 
interest (for example, a decision between two options) with a “control” condition in which the participant 
is required to process all of the same stimuli and responses, but does not engage in the process of interest 
(for example, observe the choice options, but simply press a button as soon as they are seen, without 
choosing between them).  Areas of brain activity associated with the process of interest are then identified  
by subtracting signals  observed in the control condition from those in the experimental condition.  This is 



usually done using simple t-tests or, for factorial designs, multiple regression or analysis of variance 
(ANOVA).  The potential flaws of this design are obvious (e.g., the subtraction is most informative if the 
sensory and motor processes are carried out in precisely the same manner in the control and experimental 
conditions).  However, as a matter of practice, this approach has been surprisingly successful as 
evidenced by converging evidence using a variety of other methods.   

Parametric designs.  A variant on the subtractive method, that is more sensitive, is the use of a parametric 
design that relies on additive factors logic (Sternberg, 1969).  In this case, a series of conditions are 
designed to engage the process of interest in an incremental or graded fashion (for example, an 
increasingly difficult decision).  The data are then analyzed to identify areas showing an incremental or 
graded increase in the BOLD signal that corresponds to the experimental manipulation (e.g., Braver et al., 
1997).  This is usually done using regression, to identify areas in which the BOLD signal is predicted by 
regressors that describe the experimental manipulation(s).  Like subtraction, these parametric designs are 
also sensitive to critical assumptions (e.g., about the functional form of neural responses and the BOLD 
signal’s response to the experimental manipulation).  Once again, despite potential pitfalls, this approach 
has proven to work surprisingly well again, in the sense of producing results that are later corroborated by 
other methods.  

 Neural adaptation.  A variant on the parametric approach takes advantage of the well-documented 
phenomenon of repetition suppression, a form of adaptation or habituation at the neural level (Grill-
Spector & Malach, 2001; Krekelberg et al., 2006). The neural response to a preferred stimulus decreases 
when the stimulus is repeated sufficiently rapidly (over seconds or even minutes).  The primary advantage 
of this method is that it can be used to distinguish neural responses to different processes that would 
otherwise fall below the spatial resolution of fMRI.  For example, imagine that two populations of 
neurons, which are differentially responsive to each of two different categories of visual stimuli, co-exist 
within a brain area, but that these populations of neurons are interleaved at a spatial scale that cannot be 
distinguished in the BOLD signal from this region.  By differentially adapting the region to the two 
categories of stimuli (i.e., repetitively presenting one more than the other, and then the reverse, and then 
both), it is possible to demonstrate that the two different populations of selectively responsive neurons 
exist within that region. 

Trial sequencing.  Two additional and critical design considerations are the pace of the experimental task, 
and how experimental conditions are organized across trials.  Considering only the BOLD signal, it is 
ideal to separate every trial event (e.g., stimulus presentation, decision, and motor response) by at least 8 
and preferably as much as 12 seconds.  This allows direct discrimination of the BOLD response to each 
event.  However, this not only compromises the rate of data collection, but also can interact with 
cognitive variables (such as participants’ strategies and/or motivation in performing the task).  Methods 
have been developed to analyze more rapid event-related designs (Buracas & Boynton, 2002; Burock et 
al., 1998; Friston et al., 1999; Liu, 2004), with events occurring as quickly as every 3-4 seconds.  
However, such analyses must make assumptions about the form of the hemodynamic response function 
(HRF) in order to “deconvolve” the BOLD signal response to a given event from overlapping effects of 
previous ones.  Empirical studies suggest that the form of the HRF appears to be moderately consistent 
both across brain areas and individuals — at least within regions in which it can be directly estimated 
(e.g., primary sensory and motor cerebral cortex) — and so most approaches use a pre-specified, 
canonical approximation of the HRF.  However, the extent of variation in the HRF is not yet fully 
understood, especially for regions in which it is difficult to measure (e.g., those supporting more abstract 
cognitive functions such as decision making), and thus caution is warranted.  This is compounded by the 
fact that the HRF is best characterized in response to brief, punctuated neural events.  However, many 
cognitive processes can be protracted (e.g., complex forms of decision making), and therefore are more 
difficult to model using standard rapid event-related techniques.  Although some progress has been made 



in this area (e.g., Donaldson et al., 2001; Greene et al, 2001; Visscher et al., 2003), it remains a challenge 
for BOLD-based imaging methods. 

Blocked designs.  The discussion above assumes that each trial is analyzed separately, responding to 
controlled or behaviorally-generated events (called “event-related” designs).  However, sometimes it is 
advantageous to block trials by experimental condition, so the appropriate analysis looks for sustained 
activity throughout an entire block of similar events.  These block designs can provide greater power to 
detect an effect, if the mental processes involved transpire over a longer time frame (e.g., active 
maintenance of a mental set; Braver et al., 2003).  However, the BOLD signal tends to slowly drift over 
time (at the scale of minutes) for reasons that can be unrelated to the experiment (e.g., instability of the 
scanner), the effects of which can become inextricably confounded with block effects. 

Naturalistic designs.  Finally, it is worth mentioning that a relatively new direction is to use more 
naturalistic experimental designs, in which participants engage either in self-directed tasks (e.g., reflect on 
the day’s events) or common activities (such as movie watching).  The approach to interpreting such data 
relies heavily on correlational analysis, either between brain regions within an individual (to identify 
regions of brain activity that co-vary, presumably reflecting task-relevant circuits), or across individuals 
(to identify regions that vary similarly in response to similar stimulus conditions).  For example, Hasson 
et al (2004) show that over large areas of the brain, there are remarkably high correlations in brain activity 
across individuals watching the same movie.  These approaches may be moving closer to observations of 
brain function at a level comparable to the complex dynamics involved in naturally-occurring decision 
making processes.  

Image Analysis 

fMRI data often require extensive pre-processing in order to minimize the impact of nuisance variables 
(such as machine noise, head movement, etc.).  Most of these methods are now standard.  However, there 
are several important considerations that warrant discussion here, including alignment of imaging data 
across individuals for group averaging, corrections for multiple comparisons, exploratory analyses versus 
hypothesis testing, and univariate vs. multivariate methods. 

Group averaging.  Averaging imaging data across individuals is a standard approach in fMRI, and is 
often required to improve power to detect subtle effects. To perform group averaging, the brains of each 
individual must be appropriately jointly aligned.  This is complicated by the fact that human brain 
anatomy varies considerably across individuals.  There are several methods for group alignment that vary 
in sophistication by how they morph brain maps onto one another (Fischl et al, 1999, 2012; Klein et al., 
2009; Talairarch & Tournoux, 1988; Woods et al., 1998; van Essen et al., 2001).  However, all these 
methods face a common limitation:  they attempt to align brains according to anatomic features, such as 
the shapes of the cortical folds (gyri and sulci).  Unfortunately, the relationship between function and 
anatomic structure is not identical across individuals.  For example, while the vertical meridian separating 
the left and right visual fields typically lies within the same fold of primary visual cortex (the calcarine 
fissure), its precise location (i.e, whether it lies along one bank of the fold or the other) is known to vary 
considerably across individuals.  Thus, aligning anatomic landmarks may not succeed in precisely 
aligning parts of the brain that perform the same function.  This can introduce noise into group-averaging, 
and limit spatial resolution.  Methods are currently under development that align images based on 
functional (rather than anatomic) landmarks (e.g., Sabuncu et al., 2010;  Haxby et al., 2011).  Success in 
this effort should considerably improve the sensitivity and spatial resolution of fMRI, while also 
providing new information about features of functional organization that are universal across brains. 

Exploratory analysis and multiple comparisons.  Whether analyzing images from a single brain or 
multiple brains, most methods apply variants of ordinary least squares (or the “general linear model” 



when referred to by neuroscientists). The regression model is estimated separately for each voxel 
(volumetric pixel) within the image. This step is an exploratory analysis designed to determine which 
voxels show a significant effect of the experimental manipulation.  Voxels that meet a specified level of 
statistical significance are then shown (usually by colors indicating their level of significance) in an 
activation map.   One problem with this approach is that image sets are usually made up of a large number 
of voxels (at least 10,000 and sometimes over 100,000).  Thus, the threshold used for statistical 
significance must be corrected to take account of this massive number of comparisons, and avoid a 
preponderance of Type 1 errors (“false positives”).  The simplest way of doing this is to divide the 
threshold by the number of comparisons (Bonferroni correction).  However, this risks being overly 
conservative (resulting in type II error, in which a genuine effect does not ‘survive’ this correction and 
appears to be insignificant).  This has driven the development of more sophisticated methods, such as 
cluster size thresholding or false discovery rate (FDR) analyses that take advantage of the fact that voxels 
showing truly significant effects are likely to be contiguous with one another (Forman et al., 1995; Poline 
et al., 1997; Genovese et al., 2002).  However, these methods can be complex, and subject to misuse 
(Smith & Nichols, 2009; Vul et al., 2009).  Therefore, it is important to attend carefully to the 
assumptions they make (e.g., about the independence of voxels). 

Hypothesis testing and regions of interest.  An alternative to the use of whole brain, exploratory analyses 
is to specify, a priori, regions of interest (ROIs) in which effects are expected to occur, and then restrict 
hypothesis testing to those areas.  This limits the number of comparisons, and thus lowers the expected 
false discovery rate.  However, when a significant effect is observed in an analysis restricted to a given 
ROI, it is not possible to assert that the effect is specific to that brain region since others have not been 
tested.  In practice, the best studies use a combination of the methods described above, initially using 
exploratory methods to identify regions of activity, and then confirming positive findings in subsequent 
experiments using an ROI-based, hypothesis-testing approach. The most solid findings come from a 
sequence of experiments and methods (ideally coming from different research groups) proceeding in this 
way. 

Correlational analyses. The methods described above all focus on identifying where and how changes in 
neural activity occur in response to experimental manipulation.  However, there are several important 
limitations to this general approach.  The first is that neural activity may not be the only, or even most 
important signature of neural function.  Rather, how a brain area interacts with other brain areas may be 
equally or even more important.  Imagine, for example, an area that responds differentially to two 
different categories of stimuli;  but it does so not in its level of activity, but rather by communicating with 
different areas in response to each type of stimulus.  In this case, an analysis of activity of the brain region 
will fail to reveal this selective response.  However, this can be identified using correlation analysis.  One 
current limitation of correlation analyses is that they are computationally expensive (the number of 
computations goes up exponentially with the number of voxels in the scan and the time scale and phase 
lags over which correlations are computed).  To deal with this, analyses typically focus on a small set of 
seed ROIs pre-identified using activation-based analyses (often referred to as “functional connectivity 
analysis”).  However, there is an inherent circularity in this approach since it assumes that the region can 
be identified initially by its pattern of activity which, as noted above, may not be the case.  With 
increasing computational power, it is likely that whole-brain correlation analyses will soon become 
possible, that will permit unbiased functional connectivity analysis.  Such approaches, coupled with other 
MRI-based methods of studying neural pathways (e.g., DTI) are likely to reveal increasingly sophisticated 
information about the interaction between different brain systems.  Correlation analyses can also be used 
to examine the relationship of brain activity to other physiological variables of interest (such as galvanic 
skin response, pupil diameter, eye movements, etc.), behavior (such as reaction time, accuracy, decision 
outcomes, etc.), and psychometric and demographic factors (such as personality, age, gender, etc.).  Such 
analyses have the potential to provide valuable information about the relevance of observed neural 
activity to mental function and behavior (Friston et al., 1997).  However, such analyses also carry risks 



that have recently been the subject of some attention (Kriegeskorte et al., 2009; Vul et al., 2009).  In 
particular, such analyses must attend to the same problem of multiple comparisons (in this case, the 
number of correlations) as other analysis methods. 

Multivariate pattern analysis.  A second important limitation of standard approaches to image analysis is 
the focus on discrete regions rather than distributed patterns of activity.  Perhaps the most important 
recent development in the analysis of neuroimaging data has been the move from univariate methods to 
multivariate pattern analysis (MVPA).  Univariate methods, such as those described above, analyze 
images voxel by voxel seeking to identify peaks of activity (i.e., voxels or voxel clusters that exceed a 
statistical threshold).  However, this almost certainly does not correspond to how the brain functions.  
Rather, computational activity is distributed over many regions, some of which may be more subtly 
engaged — but no less important — than others.  This has recently been addressed by the application of 
machine learning classifier algorithms.  These are “trained” on one set of imaging data to identify 
distributed patterns of activity that reliably predict specific mental states or behaviors (e.g., the perception 
of  a particular type of object, or a particular outcome of a decision).  The patterns of activity identified in 
the training data are then tested on a separate set of data, to determine the generality of their ability to 
predict mental states or function.  Such methods have proven to be successful in a variety of domains, 
including the ability to identify the orientation of a line (Kamitani & Tong, 2005) or class of objects being 
visually observed (Haxby et al., 2001), the class of an object being recollected (Polyn et al., 2005), the 
syntactic class of a linguistic stimulus (Mitchell et al., 2008), and the value of public goods in a designed 
mechanism of exchange (Krajbich et al., 2009).  Furthermore, the same MVPA methods that have been 
used to identify patterns of activity, can be used to identify patterns of correlations, that may reveal 
interactions among brain regions that are specific to particular mental states or computations (Wang et al., 
2013).  These methods represent the leading edge of neuroimaging research, promising to greatly enhance 
the sensitivity with which fMRI (and other methods) can be used to track neural activity underlying 
ongoing mental processes in human participants. 



Summary of Functional MRI (fMRI) 

 
Neuroscientific data offer a valuable source of information concerning the factors and processes that 
influence economic behavior.  The most commonly used method for generating such data is fMRI.  
Although it is subject to important limitations — not the least of which are its spatial and temporal 
resolution — it has already begun to provide important new information about the neural mechanisms 
involved in valuation and decision making.  The most common approach to experimental design and 
analysis of fMRI data is the use of subtractive logic to identify localized regions of neural activity 
associated with processes of interest.  However, more sophisticated approaches are coming into 
increasing use, including correlation-based analyses to identify interactions among brain regions, and the 
use of multivariate methods to identify distributed patterns of activity associated with mental states and 
processes. These methods are continuing to evolve, with new ones on the horizon.  These improvements 
will make it possible to identify and track, with increasing power and precision, the subtle brain 
computations involved in human mental function, including those that are central to economic decision 
making. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



3. Risky choice  
 
This section describes measurements of neural activity during risky choice. There are three topics: 
statistical moments and evaluation of risky choice; prospect theory; and causal experiments and their 
implications for economics.   
 

Statistical moments 
 
One popular model of risky choice is that statistical moments of reward distributions are weighted and 
integrated to form a choice value. This approach is popular in finance, where risk and the expected final 
payoff jointly determine the asset price, and in behavioral ecology studies, where animals are assumed to 
respond to mean and variance of foraging opportunities. A moments-based approach can also be 
motivated as a Taylor expansion of expected utility, so it should be a good approximation for local small-
scale decisions.  
 
Several fMRI studies indicate that the mean and variance of rewards of different types are separately 
encoded in brain activity (e.g., Figure 1, from (Platt and Huettel, 2008). Average mean reward seems to 
activate striatal regions (Preuschoff et al., 2006). The striatum is activated by many different types of 
rewards, including money, juice, attractive faces, faces of cooperators, anticipation of curiosity-provoking 
trivia answers, humor, and prediction error.  
 
The variance of rewards, one measure of risk, seems to activate the insula, a region involved in 
interoceptive integration of emotional and cognitive information from the nervous system (Craig, 
2002;Mohr et al., 2010). For example, fMRI shows that insula is activated by disgust, choking, pain of 
self or loved ones, and “social pain” (e.g. exclusion). The fact that insula reliably encodes financial risk 
lends credibility to the hypothesis that risk is felt emotionally (see Loewenstein et al., 2001). If true, then 
external variables that change emotional sensitivity could, by activating insula, causally change 
perceptions of risk and influence risky economic transactions (e.g. in insurance and asset markets).    
  

Prospect theory 
 
Prospect theory (Kahneman and Tversky 1979, 1992) is a psychophysically-inspired theory of how risks 
are evaluated and combined, which makes small modifications from expected utility theory. The central 
modification is that outcomes are encoded relative to a reference point. In addition, the decision disutility 
from anticipated losses is assumed to weigh disproportionately more strongly than gains, captured by a 
loss aversion parameter λ. Objective probabilities are assumed to be weighted nonlinearly, so that low 
probabilities are overweighted and higher probabilities are underweighted. Several studies have explored 
whether neural activity is consistent with these features of prospect theory (e.g. Fox and Poldrack, 2008).  
 
The goal of the neuroscience studies is to see whether there is activity associated with parametric features 
of prospect theory that can (a) show whether prospect theory explains behavior better than competing 
theories (typically EU), via activity in regions that plausibly encode subjective value; and (b) suggest new 
psychological interpretations of the biological basis of prospect theory (or EU as well). For example, a 
finding that gains and losses are encoded in different brain areas would support the hypothesis that a 
“kink” between gains and losses exists, and is driven by a  shift in underlying neural processing at zero. 
Such a finding will also suggests new hypotheses about what kinds of experimental treatments, 
descriptions, and personal traits will affect loss-aversion.   
 
An implication of reference dependence in prospect theory is that descriptions of choices which are 
equivalent in their consequences but differ in their reference point, could lead to different choices. An 



early fMRI study looked at brain activity during response to loss and gain framed choices for monetary 
gambles (De Martino et al., 2006). They looked for an interaction effect between the domain of outcomes 
(gain or loss) and the choices of sure things versus risks. 
They found activity in the amygdala in response to the typical choice (a sure thing for gains and a gamble 
for losses). Dorsal medial cingulate cortex was also differentially activated in the atypical choices 
(gambling over sure gains and accepting a sure loss). 
 
A further study showed that subjects with a particular genetic neurotransmitter variant (short-short type 
alleles of 5HTT, a gene promoter for serotonin7) showed larger framing effects (Roiser et al., 2011). 
Furthermore, the pattern of fMRI activity in amygdala in response to framing is evident in the SS allele 
subjects but is completely absent in subjects with different genetic makeup. While this is just one study, it 
shows how neuroscience could potentially identify a particular type of individual difference in sensitivity 
to economic framing effects which is nonobvious (and has a surprising interpretation on terms of emotion 
rather than logic or cognitive skill).  
 
A key component of prospect theory is loss aversion, the disproportionate disutility from losing relative to 
equal sized gains. Until recently, most evidence of loss aversion in decisions is inferred from human 
choices between monetary gambles with possible gains and losses. However, there is also behavioral 
evidence of loss-aversion in monkeys trading tokens for stochastic food rewards (Chen et al., 2006) and 
associated evidence of endowment effects in monkeys (Lakshminarayanan et al., 2008).  
 
An early fMRI study (Tom et al., 2007) showed comparable neural activity in several value related brain 
regions during evaluation of gambles. That activity is stronger as gains increase, and also stronger as 
losses decrease (e.g. going from -$10 to -$5 is a loss decrease).  The regions identified by a search of the 
whole brain were then used to explore individual differences. They found that neural loss aversion-- the 
difference in brain response to reduced loss dollar for dollar, relative to potential increased gain-- was 
strongly correlated (r = .85) across individuals with the degree of loss aversion inferred behaviorally from 
choices among gambles.8 While that study indicated a common basis for reduced loss and increased gain, 
other studies indicate different locations of brain activity for loss and gain. For example, using fMRI 
Yacubian et al. (2006) found gain activity in ventral striatum, and loss activity in amygdala and temporal 
lobe regions lateral to the striatum. Consistent with this suggestion from fMRI, two patients with selective 
bilateral amygdala lesions exhibited no loss aversion in choice behavior (De Martino et al., 2010). 
 
Prospect theory also posits that attitudes toward risk depend not only on valuation of outcome utility, but 
also on weighting of likely outcomes in the process of decision.  A simple way to account for these effects 

                                                 
7 5HTT appears to be associated with neuroticism, and with depressive reactions to life events. However, it is 
important to note that associations of single gene polymorphisms with broad behavior generally do not replicate 
strongly from study to study. As a result, the trend in “genoeconomics” is toward GWAS sampling of large numbers 
(500,000 +) of candidate genes, with aggressive correction for multiple comparison to avoid false positives. The 
Roiser et al. (2011) study chose to look at 5HTT specifically because of the role of amygdala shown by fMRI in the 
earlier de Martino et al. (2006) study, and because of other evidence of a link between 5HTT and amygdala. In any 
case, it is reasonable to be skeptical of any single gene-behavior association until at least 5-10 studies find similar 
results.  
8 Note that Tom et al. first identified regions that were responsive to both increased gain and reduced loss (by 
looking at all brain areas, a “whole brain analysis”), then measured whether individual differences in BOLD signal 
in one of those regions (chosen a priori) correlated with different individual λ values estimated from choices. 
This procedure avoids an important critique articulated by Vul et al (2009)-- that cross-individual 
correlations between fMRI activity and behavioral measures are likely to be implausibly high if they 
result from a whole-brain search (see also commentary on the Vul paper in the same journal, and 
Kriegeskorte et al., 2009). 



is by weighting an objective likelihood of an outcome, p(X), by a transformed function π(p(X)). Several 
parametric weighting functions have been suggested and estimated (e.g., (Abdellaoui et al., 2010) but we 
focus on the simple one-parameter function π(p)=1/exp([ln(1/p)γ] (Prelec, 1998). This function is 
equivalent to linear weighting of objective probability when γ=1, has increasingly nonlinear inflection for 
γ<1, and always rotate around a pivotal probability p*=1/e=.37 (at which point π(p*)=p*). A field study 
of game shows and a huge sample of horse racing bets (Snowberg and Wolfers, 2010) indicate 
overweighting of low probabilities too (see Barberis’s, 2013 brief review).  
 
The neural literature has identified some biological correlates of nonlinear probability weighting, but the 
findings are relatively less consistent – relative to those reviewed for loss aversion -- in terms of the 
neural locations of activation patterns.  An early fMRI study using a titration procedure to match gamble 
value (Paulus and Frank, 2006) linked inflection of π(p) to activity in anterior cingulate cortex (ACC).  
 
A later fMRI study by Hsu et al. (2009) found evidence for nonlinear π(p) encoded in striatal reward 
areas. We will discuss the experimental methods in their paper in some detail, to help make 
neuroeconomics methods more concrete for readers. Figure 2 shows the timeline of screenshots presented 
to subjects during fMRI, and the length of time each screen is shown.   
 
First note that fMRI has low signal-to-noise, so large samples of subjects, or many trials per subject, are 
needed to detect genuine effects but minimize false positives. (The trend is toward somewhat larger 
samples (e.g. N=30), which also powers the study of individual differences.) Second, every aspect of the 
screen display and subject response activates the brain; so great care is taken to minimize what is on the 
screen, and make motor responses simple and balanced. (Typically, subjects buttons on a box to respond, 
and which buttons are pressed are balanced across subjects.) Third, between events at which interesting 
neural activity is likely to occur (such as a choice), an inter-trial interval (ITI) of 4-10 secs is usually 
inserted, with a central fixation cross to direct visual attention, to allow the BOLD blood flow signal to 
return to baseline. Fourth, sessions typically last 30-50 minutes (at which subjects often become 
uncomfortable or habituated to a task, which reduces brain signal). Fifth, there is likely to be more severe 
volunteer selection bias (because fMRI is claustrophobic and noisy), so it is useful to do out-of-scanner 
behavioral studies to establish that behavior among fMRI volunteers and others is similar.  
 
The good news is that any stimulus that can be shown on a computer screen can be seen by the subjects.  
So most types of economics experiments can be done in a comparable form in fMRI (subject to the 
constraints above).  For example, in Figure 3 from Hsu et al. (2009) a simple gamble is displayed, which 
shows a p chance of earning $X (with (p,$X) varied to enable estimation of π(p) and u(x)). On 8% of the 
trials there is a “catch” screen asking whether the probability shown was above or below 40%. These 
trials waste time, but they help ensure that subjects are paying attention. After one gamble is presented, 
that gamble and a new gamble are shown and the subject makes a choice. In this study, the choice data are 
used to estimate a stochastic prospect theory choice model using typical maximum likelihood (MLE) 
procedures. The subjective value from MLE, and the parameters (p,$X), are then used to analyze how 
brain activity at the time of the presentation of the initial gamble is associated with the gamble features 
and MLE-estimated prospect-theoretic value.  This type of analysis of the brain activity, using 
“computational regressors” is an important advance over earlier, simple “subtractions”. Subtractions look 
for regions that are more active during trials of type A and type B. There are typically many false 
positives (e.g. a difference in visual cortex because the A and B screens look a little different.)  In general, 
it appears that when a computational regressor—such as a prospect-theory value which is different on 
each trial-- is inferred from behavior, then correlated with brain activity, false positives are reduced 
(because it is unlikely that random activity will be coincidentally associated with variable utilities).  
 



Using this method, Hsu et al., 2009) discovered neural activity in ventral striatum in response to valuation 
of different outcome probabilities in which the neural response function matched reasonably closely the 
inflection derived simply from analysis of choices (Figure 2). Hsu et al. also found a modest neurometric 
link between variation across subjects in behavioral nonlinearity of their weighting functions inferred 
from choice, and subject-specific neural activity associated with nonlinearity. However, Tobler et al. 
(Tobler, 2008) found signals associated with nonlinearity only in left DLPFC (dorsolateral prefontal 
cortex).  

 
Takahashi et al. (Takahashi et al., 2010) correlated D1 dopamine receptor density, imaged using 

PET, with more linear probability weighting (which is also associated, in the estimated Prelec (1998) 
function, with higher weights on all probabilities and hence more attractive valuation of gambles). 
Finally, Wu et al. (2009) used a motor task in which “risky choice” is equivalent to reaching very rapidly 
(<700 msec) to a narrow physical target in order to get a large reward (a slow reach earns nothing). They 
estimate that low probabilities are actually underweighted in the implicit motor valuation of reward. Their 
finding is an intriguing reminder that much human activity involves sensory and motor actions, and the 
valuation guiding those actions could work differently than abstract evaluation of mortgages or job 
candidate resumes. 

 
 Erev and Haruvy (this volume) summarize many studies comparing choices over risks which are 
described abstractly, rather than learned from experience. In learning paradigms, subjects indicate a 
modest tendency to underweight low probabilities (the opposite of the usual pattern from descriptions) 
after controlling correctly for sampled experience. Psychological and neural measures could help explain 
the mechanism behind this difference in choices. Indeed, FitzGerald et al. (2010) found stronger fMRI 
activity in mOFC (lateral ventral putamen) in learned (described) choice. The difference in activity 
regions supports the hypothesis that learned and described risks are processed differently.  
 

Causal manipulations 
 
Conventional economic analyses typically draw predictive power by assuming stability of 

preferences, using previous choice data to infer preferences (e.g., by estimating demand elasticities), 
then—holding preferences fixed-- predicting a comparative static change in choices based on changes in 
information, prices, or income.  However, as the neural circuitry underlying choice becomes better 
understood, it will be possible to causally influence neural computations reliably, and possibly change 
choices as a result.9 Such “neural comparative statics” will test how well the circuitry is understood, and 
are also likely to show how some unconventional variables, that are not in standard theory, influence 
economic choices.  Indeed, several studies have already shown such causal influences in choice among 
risky financial gambles.   

Risk-aversion seems to be causally increased by: Experiencing stress* (induced by immersion of 
hands in cold water) (Porcelli and Delgado, 2009); stimulation (“up-regulation”) of rDLPFC (right 
dorsolateral prefontal cortex) using tDCS (transcranial direct current stimulation) (Fecteau et al., 2007); 
seeing negative-affect images* before choice (Kuhnen and Knutson, 2011); and eating food* (Symmonds 
et al., 2010).  Risk-seeking seems to be causally increased by: Disrupting right DLPFC (Knoch et al., 
2006); stimulation using tDCS in older adults (Boggio et al., 2010); lowering serotonin* in macaques by 
depleting tryptophan (Long et al., 2009). Loss-aversion can be down-regulated by a perspective-taking 
instruction to “think like a trader” and combine losses and gains mentally (Sokol-Hessner et al., 2009). 
fMRI indicates this down regulation works, to some extent, by increased DLPFC activity during down-
regulation and corresponding reduction in amygdala activation in response to loss (Sokol-Hessner et al., 
2010). 
                                                 
9 These types of causal influences have been for a long time using pharmacology, and techniques like TMS to affect 
vision and motor movements.  



Note that in the previous paragraph, the studies marked (*) did not record direct measures of 
brain activity, so those studies did not report direct evidence of causal changes to brain activity on risk 
taking behavior. However, the presumption is that the causal treatment is very likely to have changed 
brain activity (in a way which is, in principle, observable by further study). Indeed, given the expense and 
analytical challenges of fMRI, a good method for studying interesting causal effects on risk-taking (or any 
other economic behavior) is to start with a treatment that is easy to implement, establish robustness and 
boundaries of causal effects, and only then look for corresponding causal changes in neural activity.  

 
There are two lessons from these biologically causal experiments: First, exogenous changes to the 

neural circuitry (observed directly, or presumed in advance of direct observation) can directly change 
choices. These effects are not due to changes in prices, information, or constraints (in any typical sense). 
These effects therefore suggest a possible expansion of the rational choice view in economics to include 
computational circuitry. Eventually we could understand the conditions under which that computational 
circuitry produces choices that approximate constrained-optimal rational choice as in consumer theory, 
and conditions under which choices will deviate most (and at high cost).  

Second, the ability to cause change is useful as a tool to test the depth of understanding of how 
the circuitry works in general. And ideally, some of these results will invite new economic hypotheses 
about how exogenous changes in the economic environment will influence neural computation, and hence 
predict changes. For example, if causally disrupting a brain region involved in inhibition and self-control 
reduces self-control, and external events also place a burden on activity in that region (mimicking 
disruption), then one can hypothesize that the disruptive events will affect economic choice. What these 
new hypotheses are, and how well their effects can be seen in highly-aggregated data, remains to be seen.  

 
Logical rationality and biological adaptation 

 
Finally, some neuroeconomics results ironically highlight a conflict between notions of 

rationality. In at least three studies, patients with brain lesions or disorders behave more consistently with 
SEU or EU than neurotypical subjects do.  A group of patients with OFC brain lesions do not exhibit the 
Ellsberg paradox (Hsu et al., 2005). Another pair of patients with amygdala damage exhibit no loss-
aversion (De Martino et al., 2010). And autistic patients exhibit reduced gain-loss framing effects (De 
Martino et al., 2008). (However, other studies show that lesion patients exhibit more violations of 
transitivity (Fellows and Farah, 2007) and GARP (Camille et al., 2011)).  

In the first three examples, if SEU and EU axioms (including description-invariance, or no 
framing change) are principles of logical rationality, then why would damage to the brain  cause behavior 
to be abnormally closer to those logical principles?  

An intriguing possible answer is that neurotypical brains are adapted to solve evolutionary 
challenges of survival and reproduction, while conserving phylogenetically-old regions inherited from 
other species and adding “kludges” (Ely, 2011). There is no reason to think that kludged evolutionary 
adaptation will lead to neural processes that obey logical rationality in judgment and choice. Put 
differently, the normative appeal of logical principles does not imply that logic will guide guide 
neurotypical behavior—in fact, quite the opposite will typically be the case when normative logic and 
descriptive behavioral principles differ.   

The neural evidence also suggests that there could be two paths to logically rational choice: The 
abnormal path is that dysfunction in neural processes disable the neurotypical behavior that violates 
logic. For example, the patients with OFC damage do not integrate negative emotional information from 
the amygdala, which is (neuro)typically triggered by Ellsbergian ambiguity; so they treat ambiguity and 
risk as equivalent. The hyper-rational path is that special intuitions, training, or skill create a goal-
directed symbolic valuation process which override the neurotypical response and implement logical 
behavior. Experiments using a mixture of subjects who are neurotypical, have specialized damage, and 
have extraordinary training could make it possible to distinguish these two routes to logical choice, and 
contrast them with typical logic-violating choice.  



 
Summary of Risky Choice  

 
 Neuroeconomic studies of risky choice represent a healthy synthesis of parametric modeling 
(from economics and decision theory) and broad types of neural measurement from neuroscience (using 
fMRI, lesions patients, PET, and other methods). One clear finding is that risk and reward are reliably 
encoded in insula (risk) and striatum and medial OFC (reward). Since insula is activated by many felt 
emotions, this finding supports the hypothesis of “risk as feelings”. fMRI and lesion studies of prospect 
theory indicate a potential role for emotion, that is not yet well understood. The amygdala is known to be 
associated with rapid “vigilant” processing of threat (as well as social emotion, and sometimes reward). 
Amygdala active is associated with framing shifts and with loss-aversion. Moving beyond simple brain-
behavior associations, there is a variety of evidence of how exogeneous changes in biological states, such 
as stress, food satiety, and visual images, change risk-taking behavior. These studies do not yet fit 
together, but they suggest a shift away from the idea that risk-taking is a stable behavioral propensity, to 
the idea that preferences are “state-dependent” (in a way familiar from decision theory), and depend on 
mental and biological states. This is not really a radical departure from standard economics, but 
understanding mental state-dependence requires a lot more data, and an understanding of when state 
changes are triggered by external stimulus (e.g., an advertisement or stressor) and how internal 
adjustment to such externalities works.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
4.  Intertemporal choice and self-regulation  

 
Intertemporal preferences continue to be one of the most active research topics in the field of 
neuroeconomics.  In the past decade, researchers have identified a large group of empirical regularities, 
many of which are related to neural mechanisms.  We begin this section by summarizing the body of 
empirical results in the intertemporal choice literature, including neuroimaging results. 
 There is no consensus on the theoretical interpretation of these empirical regularities (e.g., 
Rustichini 2008).  The competing theories can be divided into three classes: multiple-self models with 
selves that have overlapping periods of control (e.g., Freud 1923; Thaler and Shefrin 1981), multiple-self 
models with selves that have non-overlapping periods of control (e.g., Strotz 1957; Laibson 1997), and 
unitary-self models (e.g.,Dekel et al 2001; Gul and Pesendorfer 2001).  We turn to these classes of 
theories at the end of the section and relate them to the available evidence. 
 

Empirical regularities 
 

The intertemporal choice literature is vast.  In this subsection, we attempt to summarize some of the key 
empirical findings, paying special attention to the findings with a biological interpretation. 
 
1.  Discount rates inferred from subject choices between smaller-sooner vs larger-later monetary 
rewards, are anomalously high. Imputed discount functions have a higher discount rate at short horizons 
than at long horizons (e.g., Ainslie 1991, Thaler 1981, Kirby 1996).  Although these findings are often 
cited as the basic foundational results in the intertemporal choice literature, they have turned out to be far 
more complicated and problematic than originally believed (for reviews see Frederick, Loewenstein and 
O’Donoghue 2002; Chabris, Laibson, Schuldt 2008; White et al 2013).  In fact, it is now clear that  these 
empirical patterns were originally misinterpreted as support for dynamically inconsistent discount 
functions (Chabris, Laibson, Schuldt 2006, Halevy 2011; White et al 2013; cf. Thaler 1981).  We 
summarize five of the most important methodological problems/paradoxes in the interpretation of the 
results from money now vs. money later experiments.  (i) Many of the discounting results in the literature 
are partially driven by reliability bias: subjects view later rewards as riskier than sooner rewards even 
when the researchers try very hard to equate reliability across different dates of reward delivery (see 
Andreoni and Sprenger 2012 for one way of handling such an uncertainty effect).  If such reliability bias 
is present and overlooked by the researcher, inferred discount rates will be biased up.  (ii) There is a 
preference for ‘as soon as possible’ reward receipt, even when the soonest reward is not available in the 
present (Glimcher et al 2007).  This may also be a consequence of reliability bias: sooner rewards may be 
viewed as more reliable even when the “soonest” possible reward is in the future. (iii) Measured discount 
rates display sub-additivity bias (Read 2001): the product of the discount factor measured from t to t+1  
and the discount factor measured from t+1 to t+2 is far lower than the discount factor measured from t to 
t+2.  Relatedly, Benhabib et al (2010) have argued that time preferences measured in the laboratory 
include a ‘fixed cost of delay’ that is insensitive to the length of the delay.  Moreover, Zauberman et al 
(2009) argue that subjects transform time delays with a log scale, thereby creating a gap between high 
short-run and low long-run discount rates.  (iv) The discount rates measured in laboratory experiments are 
too high to be consistent with commonly observed, voluntary behaviors, like accumulating retirement 
savings and home equity (however, Andersen et al 2008 points out that small stakes curvature in the 
utility function reduces this tension).  (v) In principle, smaller-sooner vs. larger-later money choices 
shouldn’t measure discount rates at all, but should instead measure the rate of intertemporal 
transformation (i.e., the relevant interest rate for borrowing or lending; see Chabris, Laibson, Schuldt 
2006).  For all of these reasons, there is a growing recognition that discount rates imputed from sooner-
smaller vs. larger-later reward experiments are difficult to interpret.  Indeed, confounding factors like 
reliability bias, related uncertainty effects, and sub-additivity effects, may swamp the underlying goal of 



measuring time preferences.  In summary, the experimental paradigm that studies “money now vs. money 
later” choices is rife with confounds, challenging the usefulness of the paradigm as a tool for eliciting 
time preferences (White et al 2013).  
 

2.  Static choice problems with temptation goods generate preference reversals.  For example, Read and 
Van Leeuwen (1998) ask their subjects to choose a snack to be eaten one week later.  Subjects tend to 
choose healthy snacks.  One week later, the subjects are told that the researchers no longer have the 
paperwork and therefore the subjects must again pick a snack, which will now be eaten immediately.  
Now preferences shift toward preference for the unhealthy snacks.  Similar reversals have been 
documented with other studies (e.g., Read et al 1999; Oster and Scott-Morton 2005).  The animal choice 
literature anticipates these types of results (e.g., Raichlin and Green 1972; see also Rosati et al 2007). 
 
3.  Economic agents appear to be counterfactually optimistic about their future likelihood of engaging in 
patient behavior.  Dellavigna and Malmendier (2004, 2006) use data on the menu of gym fees (e.g., 
annual, monthly and per-visit), the frequency of membership terminations, and the frequency of gym 
visits (measured with swipe-cards) to infer that gym members have an excessively optimistic view of 
their own likelihood of future exercise. Survey responses in the same study reinforce this conclusion. 
 
4.  Economic agents are willing to pay for commitment.  Ashraf et al (2006) find that one-quarter of their 
(rural Philippine) subjects are willing to put some of their savings in an illiquid account with the same 
interest rate as an alternative liquid account.  Beshears et al (2013) document similar behavior, even when 
the illiquid account has a lower interest rate than the liquid account.  Moreover, Beshears et al  find that 
savings accounts attract more deposits the higher the penalty for early withdrawal, holding all else equal.  
Numerous studies have documented a demand for commitment: e.g., Wertenbroch (1998); Ariely and 
Wertenbroch (2002); Karlan, Gine, and Zinman (2010); Kauer, Kremer, and Mullainathan (2010); 
Houser, Schunk, Winter and Xiao (2010); and Royer, Stehr, and Sydnor (2012). 
 
5.  Imputed discount rates are negatively correlated with scores on IQ tests.   In both children (Benjamin, 
Brown, and Shapiro forthcoming) and adults, (Burk et al 2009), high scores on tests of intelligence or 
cognitive function correlate with low rates of measured time discounting (see Shamosh and Gray for a 
review 2008). 
 
6.  Subjects are less patient when placed under cognitive load.  When subjects are asked to remember a 
relatively long string of digits, their intertemporal choices become more impatient (Shiv and Fedorikhin 
1999; Hinson, Jameson, and Whitney 2003; Benjamin, Brown and Shapiro forthcoming).  This effect has 
been produced with both food rewards and monetary rewards.  
 
7.  Subjects are less patient when they are primed with affective cues; likewise, subjects are more patient 
when they are primed with abstract cues. For example, Rodriguez, Mischel and Shoda (1989) find that 
children are less willing to wait for food rewards when the food is visible. Likewise, children are more 
willing to wait for food rewards when asked to think about the rewards abstractly (e.g., think of pretzels 
as logs and marshmallows as clouds).   Loewenstein (1996) and Berns et al (2007) review many different 
visceral/affective manipulations.  In a neuroimaging experiment, Albrecht et al (2010) report that subjects 
choose more patiently and show less affective engagement when (i) they are making choices for 
themselves that only involve options in the future, or when (ii) they are making choices for someone else.  
 
8.  Subjects show diminished willpower after performing earlier, disimilar tasks that require willpower.  
For example, Muraven, Tice, and Baumeister (1998) show that subjects are less able to sustain pressure 
on a hand-grip after suppressing the expression of emotion while watching an upsetting video.   
 



9.  The willingness to delay gratification is compromised during adolesence as a consequence of the 
interplay between mature affective/emotional systems and immature top-down control systems (e.g., 
PFC).  Neuroimaging evidence shows that among adolescents, mature neural systems below the cerebral 
cortex (e.g. the accumbens) become disproportionately activated during decision tasks relative to later-
maturing top-down control systems, thereby biasing the adolescent's action toward immediate over long-
term rewards (Galvin et al 2006; Casey, Getz, and Galvan 2008; Casey, Galvan, and Hare 2005).  Dense 
neural networks are formed in the PFC during adolescence and pruned at least through the early 20’s.  It 
is not known whether the association between PFC development and the willingness to delay gratification 
is causal or correlational, though transcranial magnetic stimulation (TMS) studies provide support for the 
causal interpretation (Figner et al 2010).  Green, Fry, and Myerson (1994) show that patience is correlated 
with age. 

 
10.  The tendency to delay gratification varies across species with adult humans showing the most 
patience.  Tobin and Logue (1994) study an intertemporal choice paradigm that can be used with human 
and non-human populations.  They show that patience increases as the subject population switches from 
pigeons, to rats, to human children, to human adults.   However, this position is challenged by research 
that has argued that high rates of impatience in non-human species are observed in food deprived animals, 
invalidating comparisons to relatively sated human subjects (e.g., Rosati et al 2007; see McClure et al 
2007 for evidence of high rates of impatience among non-sated human subjects). 
 
11.  The dlPFC (dorsolateral prefrontal cortex) has a low sensitivity to reward delay and the meso-limbic 
dopamine reward system has a high sensitivity to reward delay. McClure et al (2004, 2007) find that 
moving a reward further away in time causes the BOLD signal in the analytic cortex to decline relatively 
little. By contrast, the dopamine reward system displays a much more rapid decline in activation as 
rewards are delayed.  Similar results have been reported by Albrecht et al (2010).   
 
12. The dlPFC is more active when a delayed reward is chosen over an immediate reward.  McClure et al 
(2004, 2007) find that the BOLD signal in left dlPFC (dorsolateral prefrontal cortex) is stonger when a 
delayed reward is chosen relatively to trials in which an immediate reward is chosen. Hare et al (2009) 
find that left dlPFC is active when subjects reject a good tasting, unhealthy snack in favor of a neutral 
alternative reward.  
 
13. The dopamine reward system has a decline in activation that follows a hyperboloid that matches the 
valuation function implied by choice.   Kable and Glimcher (2007) estimate discount functions using 
choice data and find that the BOLD signal in the mPFC (medial prefrontal cortex) matches the same 
pattern of decay.  McClure et al (2007) find a similar pattern of declining activation in the dopamine 
reward system.   
 
14.  Exogenously disrupting normal functioning of the lateral pre-frontal cortex (lPFC), causes choices 
between now-vs-later rewards to shift towards the now option, but does not affect choices between 
rewards that are both delayed. Figner, Knoch, Johnson, Krosch, Lisanby, Fehr and Weber (2010) show 
that disruption of left, but not right, lPFC with low-frequency repetitive transcranial magnetic stimulation 
(rTMS) increased choices of immediate rewards over larger delayed rewards. rTMS did not change 
choices involving only delayed rewards or valuation judgments (in contrast to choices) of immediate and 
delayed rewards.  This paper provides causal evidence for a neural lateral-prefrontal cortex–based self-
control mechanism in intertemporal choice. 
 

Multiple-self models with selves that have overlapping periods of control 
 

Three classes of models have been used to organize and explain these findings.  We first discuss 



multiple-self models that have overlapping periods of control.  We then discuss multiple self models with 
non-overlapping periods of control.  Finally, we discuss unitary self models with dynamically consistent 
preferences.   We emphasize that all of these models have been set up so they make similar qualitative 
predictions.  Hence, they are difficult to distinguish empirically.   

Some multiple self models posit the co-existence of multiple neural systems with occasionally 
conflicting goals/preferences.  These systems struggle to control or influence the choices of the decision-
maker.  Models in this class first gained widespread acceptance after Freud (1923) argued that human 
choice is explained by an ongoing conflict among a conscientious superego, a self-interested ego, and a 
passion-driven id.   Related ideas were also advocated by Smith  (1759, 1776) who drew a distinction 
between people’s “interests” and their “passions.” Smith frequently discussed internal struggles between 
these conflicting sets of preferences (see Ashraf et al 2005 for a discussion of Smith’s “behavioral” 
perspective).  Loewenstein (2006) has also developed related models. 
          In the psychology literature, dualities are drawn between controlled and automatic cognition 
(Schneider & Shiffrin, 1977), cold and hot processing (Metcalfe and Mischel, 1999), System 2 and 
System 1 (Frederick and Kahneman 2002; Kahneman 2011), deliberative and non-deliberative decision-
making (Frederick, 2005), conscious and unconscious processing (Damasio 1994; Bem 1967), and 
effortful and effortless systems (e.g., Muraven, Tice, and Baumeister 1998).   
          Neuroimaging research has located executive function in the pre-frontal cortex (McClure et al 
2004, 2007; Hare et al 2009, Figner et al 2010; Albrecht et al 2010).  These authors argue that the 
dorsolateral prefrontal cortex is a critical brain region that is involved in self-regulation, self-control and 
executive function.  These findings explain why individuals with a comprised dorsolateral prefrontal 
cortex (e.g., due to cognitive load, lack of cognitive development, willpower exhaustion, injury, or 
interventions like transcranial magnetic stimulation) are more likely to make relatively impatient choices.  
          However, just because executive function is localized in the dlPFC, does not necessarily provide 
support for a two system model (or some other multiple-self model).  Kable and Glimcher (2007) 
interpret the data as supporting a unitary-self model.  Hare et al (2009) develop a framework in which 
executive function is implemented in the dlPFC, but the dlPFC is only one of many sources that 
contribute to valuation. 

Some economists have proposed two-system models, including models that contrast “planner” and 
“doer” systems (Shefrin and Thaler, 1981), patient and myopic systems (Fudenberg and Levine, 2006, 
2010; Fudenberg, Levine, and Maniadis 2012 ), abstract and visceral systems (Loewenstein & 
O’Donoghue 2004; Bernheim & Rangel, 2004), and viscerally informed and analytic systems (Broca and 
Carrillo 2008a, 2008b, 2012, 2013). 

 
Multiple-self models with selves that have non-overlapping periods of control 

 
 Researchers have also advocated models with dynamically consistent preferences generated by a 
unitary self at each point in time.  Strotz (1955) was the first to propose such a framework, though his 
ideas were anticipated by Ramsey (1928) and Samuelson (1931).  Strotz’s ideas were applied by Laibson 
(1997) and O’Donoghue and Rabin (1999), who studied intra-personal discounting with a model of 
intergenerational preferences proposed by Phelps and Pollak (1968).  This model is referred to as quasi-
hyperbolic discounting, present bias, or hyperbolic preferences.  In this model, the agent has a well-
defined (unitary) set of preferences at each point in time.  But the agents’ preferences at date t conflict 
with the agent’s preferences at all future dates.  If the agent anticipates these conflicts, she will attempt to 
constrain or commit her own future behavior.  
 More formally, the model posits that the discount function at date t is given by 1 (t=0) and discount 
function values at times t>1 are  βδt where β and δ are weakly bounded between 0 and 1. To understand 
the mechanics of this model, consider the illustrative case δ=1.   Now the model implies that current 
rewards have full weight, and any future reward has weight β. It is easy to see how this framework 
generates dynamically inconsistent preferences (and therefore a potential taste for commitment).  From 



the perspective of date 0, dates 1 and 2 both have weight β so a unit reward at date 1 is worth just as much 
as a unit reward at date 2.  But from the perspective of date 1, a unit reward at date 1 is worth 1/β times 
the value of a unit reward at date 2.  Hence, the unitary self at date 0 and the unitary self at date 1 don’t 
agree on the relative value of rewards at dates 1 and 2. 

Proponents of present-bias argue that parsimony and predictive accuracy support this modeling 
framework.  These models make sharp predictions that match available data (Angeletos et al 2001; 
Laibson, Repetto, and Tobacman 2007) and they provide an empirically validated theory of 
misforecasting (Della Vigna and Malmendier 2004, 2006) and commitment (see above).  On the other 
hand, present-bias models violate classical welfare assumptions and introduce the possibility of multiple 
equilibria.  However, continuous-time implementations eliminate these drawbacks (Harris and Laibson 
2013). 
 McClure et al (2004) point out that the β-δ model can also be interpreted as a model with multiple 
simultaneous selves.  Specifically, posit the existence of two selves.  One self is an exponential discounter 
with discount factor δ. A second self is a completely impatient agent.  Suppose that the two selves 
combine their preferences with weights β and 1-β.  Then the aggregate (weighted) preference is 1 for 
immediate rewards and βδt for future rewards. 
           
 

Unitary-self models 
 

 In the last decade, researchers have realized that phenomena like commitment are not necessarily 
inconsistent with unitary self models, which feature dynamically consistent preferences. These models 
assume that agents have preferences over choice sets.  Specifically, agents may prefer not to have an 
option in their choice set, even if they do not pick that alternative.   For example, an agent on a diet may 
find exposure to a tempting food aversive even if that tempting food is in fact not consumed.  Dekel et al 
(2009) and Gul and Pesendorfer (2001) have proposed models in this class.  Laibson (2001) and 
Bernheim and Rangel (2004) propose related models in which menu-based temptation effects are 
endogenously dependent on past associations between cues/menus and rewards.  Such endogenous 
temptation models are based on the classical conditioning paradigm first proposed by Pavlov (e.g., Pavlov 
and Anrep 1927) and application of those principles to associations with environmental cues (e.g., heroin 
addicts craving when they see former co-users; see Siegel, 1984).    
 

Theoretical summary 
 

 It is not clear how the theoretical literature will develop going forward.  The available neural 
evidence can be interpreted as support for multiple self models with overlapping periods of control, 
multiple self models with non-overlapping periods of control, or unitary self models.   The existing neural 
data does not sharply distinguish between these accounts.   
          There is therefore an ongoing debate over the neural foundations of intertemporal choice.  
However, some regularities have emerged. The key finding is that executive function (e.g., choosing the 
item with less immediate reward) is associated with activity in the dorsolateral prefrontal cortex (McClure 
et al 2004, 2007; Hare et al 2009, Figner et al 2010; Albrecht et al 2010). 
 
 
 
  



5. The neural circuitry of social preferences  
 

In this section, we review evidence about the neural processes that govern deviations from purely self-
interested behavior (i.e., the neural circuitry of social preferences10). The evidence is based on 
neuroeconomic studies that combine noninvasive neuroscience tools – such as fMRI, TMS and tDCS11– 
with behavioral games used in experimental economics. The neuroeconomic approach aims to provide a 
micro-foundation of social preferences in terms of the underlying neural networks, which will eventually 
be achieved with the development of formal models of the underlying brain circuitry showing how the 
assumptions and parameters of behavioral models of social preferences relate to the empirically verified 
assumptions and parameters of the brain model. This will lead to a better understanding of the nature of 
social preferences, and the sources of individual differences in other-regarding behaviors, including 
pathologies.  

Theories of social preferences are based on the concept of decision utility (D. Kahneman, 1994). 
Decision utility is defined as the utility function that predicts observed decisions – hence decision utility 
is equivalent to the economic concept of revealed preference. Decision utility can, in principle, be 
distinguished from (a) experienced utility, which is the hedonic experience associated with the 
consumption of a good or an event, (b) anticipated utility, which is the anticipation of experienced utility 
at the time of decision-making, and from (c) remembered utility, which is the experienced utility 
consumed when remembering past actions and events.  

A central question, which recent studies address, is how the brain constructs decision utilities when 
a person’s behavior reflects his or her own rewards but is also governed by competing social preferences 
such as warm glow altruism, reciprocity, or inequity aversion. This general question implies a host of 
other important questions such as: Is self-interest a primary motive that appropriate inhibitory machinery 
needs to constrain? If so, which brain circuitry is involved in these inhibitory processes? To what extent 
are these processes related to emotion regulation? Do the positive hedonic consequences associated with 
non-selfish behaviors partially govern deviations from economic self-interest and, if so, are these complex 
social rewards represented in the striatum and the OFC (orbitofrontal cortex) like primary or monetary 
rewards (B. Knutson and J. C. Cooper, 2005, P. O'Doherty J, 2004), or do they rely on different neural 
circuitry?  

 

Social preferences and reward circuitry 

Theories of reciprocity and inequity aversion imply that subjects prefer the mutual cooperation outcome 
over the unilateral defection outcome in the canonical prisoners’ dilemma game, even though unilateral 
defection leads to a higher economic payoff. Although these theories do not make assumptions about the 
hedonic processes associated with fairness related behaviors (because they rely on decision utilities), a 
plausible interpretation of these theories is that subjects in fact derive higher hedonic value from the 
mutual cooperation outcome (J. W. Thibaut and H.H. Kelley, 1959). Therefore, a natural question is 
whether we can find neural traces of the special reward value stemming from the mutual cooperation 
outcome. Two neuroimaging studies (J. K. Rilling et al., 2004, James K Rilling et al., 2002) report 
activation in the ventral striatum when subjects experience mutual cooperation with a human partner 
compared to mutual cooperation with a computer partner. Given substantial evidence that primary and 
secondary reward anticipation activates the striatum, these studies suggest that mutual cooperation with a 
human partner is especially rewarding (holding financial consequences fixed through the computer 
partner control).  
                                                 
10 This section draws heavily on (and overlaps with) the work of Fehr and Camerer (2007) and Fehr (2009).  
Interested readers can find details in those papers.  
11 Transcranial direct current stimulation. 



Social preference theories also predict that subjects prefer punishing unfair behavior such as 
defection in public good and prisoner’s dilemma games because leaving an unfair act unpunished is 
associated with higher disutility than bearing the cost of punishing an unfair act. In this view, it is natural 
to hypothesize that the act of punishing defection involves higher activation of reward circuitry. A PET 
(positron emission tomography) study (D. DeQuervain et al., 2004) examined this hypothesis in the context 
of a social dilemma game with a punishment opportunity. This study showed that the dorsal striatum 
(caudate nucleus) is strongly activated in the contrast between a real punishment condition (in which the 
assignment of punishment points hurts the defector in economic terms) and a symbolic punishment 
condition (where the assignment of punishment points did not reduce the defector’s economic payoff). In 
a another study Singer et al. (2006) documented that men (but not women) who passively observe that a 
defector in a prisoner’s dilemma is punished by a third party show reward related activation in the ventral 
striatum. 

Further evidence that decisions involving social preferences are associated with activity in reward 
circuitry comes from fMRI studies of charitable donations (William T. Harbaugh, Ulrich Mayr and Daniel 
R. Burghart, 2007, J. Moll et al., 2006), reactions to offers in a take-it-or-leave-it ultimatum bargaining 
game (Tabibna Golnaz, Ajay B. Satpute and Matthew D. Lieberman, 2008), and from distribution tasks 
(E. Tricomi et al., 2010). Ventral tegmental (VTA) and striatal areas are both activated by receiving 
money and by making non-costly donations, indicating that "giving has its own reward" (J. Moll, et al., 
2006). Across subjects, those who made more costly donations also had more activity in the striatal 
reward circuitry. In one study (William T. Harbaugh, Ulrich Mayr and Daniel R. Burghart, 2007) subjects 
in a forced-donation condition passively observed money being transferred to themselves or to a charity. 
In a voluntary condition, subjects could decide whether to accept these monetary transfers. Subjects 
reported higher satisfaction in both the forced and the voluntary condition if the charity received a transfer 
(controlling for the subject’s cost of this transfer). Moreover activations in dorsal and ventral striatum in 
both conditions are positively correlated with the money that goes to the charity. Thus, all else equal, 
subjects seem to experience charitable donations as rewarding because the very same reward areas that 
are activated when the subjects themselves receive a monetary transfer are also activated when the 
subjects make a costly transfer to a charity.  

Neural evidence for inequality aversion was reported by Tricomi et al. (2010). In pairs of subjects, 
one “rich” subject randomly received a $50 endowment at the beginning of a trial (the other “poor” 
subject did not, but knew the other subject had received the bonus). Both subjects then rated the outcome 
of additional transfers to “self” and “other” during fMRI. The rich subjects showed a significantly higher 
activation in reward related areas (e.g. ventral striatum) for transfers to “other” compared to “self”, while 
the poor subjects showed higher neural reward activation for transfers to “self” compared to “other”. The 
authors’ interpretation is that the rich subject is rewarded by a reduction in the gap between his or her 
earnings and the poor subject’s earnings, and the poor subject finds an increase in the wealth gap 
negatively rewarding. Finally, a recent ultimatum game study (Tabibna Golnaz, Ajay B. Satpute and 
Matthew D. Lieberman, 2008) provides evidence suggesting that the fairness of a bargaining offer – 
controlling for the absolute size of the monetary gain – is associated with activation in the ventral 
striatum. The same dollar bargaining offer of, say $5, elicits higher striatal activation if it represents a fair 
share (say 50%) of the amount which is being bargained over, compared to when that dollar offer 
represents a small share (only 15%, for example). 

The activations observed in these studies and several others indicate that social rewards commonly 
activate the dorsal or ventral striatum. There is substantial overlap between these areas of activation and 
activation observed in studies of reinforcement learning or anticipated money reward (E. Fehr (2009),  E. 
Fehr and C. F. Camerer, 2007). This overlap is consistent with the hypothesis that social preferences are 
similar to preferences for one’s own rewards in terms of neural activation, which is supportive of theories 
in which decisions reflect a weighted balance between self-interest and the interests of others.  



The studies described above use the simplest multiperson paradigms that allocate money between 
people or entities. These are important building blocks. Some recent studies consider how the neural 
circuitry of prosocial behaviors and emotions is affected by various factors.  

One topic is “social image”: How does knowing another person will observe you affect brain 
activity and choice? Economists have become interested in this topic (e.g. Bernheim and Andreoni, 2009) 
and it is important since social image could be affected by many details of how information and 
institutions are organized. An fMRI study showed that activity in bilateral striatum was stronger when 
Japanese subjects were being observed making charitable donations, compared to no observation (Izuma, 
Saito, Sadato 2008), which is consistent with the hypothesis that reputation derived from charitable 
donations is rewarding.  

Consistent with a broad concept of inequity-aversion, one study focused on whether knowing that a 
high-status person suffers a setback produces a positive reward from “schadenfreude”. Activity in 
response to hypothetical scenarios was found in ventral striatum (and BOLD signal correlated with self-
rated responses; Takahashi et al., 2009). This result resembles the finding of Singer et al. (2006) 
mentioned above.  

Social preferences and emotions are also likely to play a role in non-economic domains. One neural 
study exploring this topic presented vignettes based on actual murder cases with “mitigating 
circumstances”, such as a husband murdering his wife to prevent her further suffering. Judges and juries 
are typically required to consider these circumstances during sentencing, even when the guilt of the 
murderer is established. Yamada et al. (2011) found that insula activity, a known correlate of simpler 
kinds of empathy, was associated with the strength of sentence reduction.  

Do activations in reward circuitry predict choices? 

The evidence above is consistent with the view that costly pro-social acts are rewarding. However, the 
hedonic interpretation of social preference theories also implies that these acts occur because they are 
rewarding. If it could be shown that higher activations in the striatum imply a higher willingness to act 
altruistically, the case for the reward interpretation would be strengthened considerably.  

Neuroimaging data do not allow causal inferences. However, it is possible to move towards 
causality by predicting choice behavior in one treatment (“out of treatment” forecasting) from neural 
activity in another treatment. For example, individual differences in caudate nucleus activation when 
punishment is costless for the punisher predicts how much individuals actually pay for punishment when 
it is costly (D. DeQuervain, et al., 2004). Likewise, individual differences in striatal activity in the 
condition where donations are forced predicts subjects’ willingness to donate money to charities in the 
condition in which donations are voluntary (William T. Harbaugh, Ulrich Mayr and Daniel R. Burghart, 
2007). These results further support the reward interpretation of social preferences, which in turn provides 
support for the hypothesis of a common neural currency of social rewards and other primary and 
secondary rewards (P. R. Montague and G. S. Berns, 2002).  



The role of the prefrontal cortex (PFC) in decisions involving social preferences 

If people have social preferences, the brain must compare social motives and economic self-interest and 
resolve conflict between them. Several studies indicate that the prefrontal cortex, a brain region that 
evolved recently (in evolutionary time) plays a decisive role in this conflict resolution. For example, the 
ventromedial PFC (VMPFC; Brodman area 10, 11) is more active (DeQuervain et al. 2004) when a player 
can choose to punish an intentional defector at a cost to himself compared to when punishment is costless; 
this result is consistent with the hypothesis that this area is involved in the integration of separate benefits 
and costs in the pursuit of behavioral goals (Narender Ramnani and Adrian M. Owen, 2004). In charitable 
donations (J. Moll, et al., 2006), the contrast between altruistic decisions involving costs and no costs also 
showed activation of the VMPFC (ventromedial Prefrontal cortex; in particular Brodman area 10, 11, 32) 
and the dorsal anterior cingulate cortex (ACC). Since the ACC is thought to play a key role in conflict 
monitoring (M. M. Botvinick et al., 2001), activity in this region is consistent with the existence of a 
trade-off between self-interest and pro-social motives.  

The role of the VMPFC in decisions involving costly altruism is also interesting because of related 
activation in this region in other studies. The VMPFC is involved in emotional processing and moral 
judgment (M. Koenigs et al., 2007, J. Moll et al., 2005), in integrating the value of consumer products and 
their prices (B. Knutson et al., 2007), in the encoding of the willingness to pay for consumer goods, 
lotteries (V. S. Chib et al., 2009, A. Rangel and T. Hare, 2010), and charitable donations (T. A. Hare et 
al., 2010). Lesions to VMPFC are also associated with poor choices in various situations (A. Bechara et 
al., 1997,  1994) which require integrating costs and benefits, and in reduced prosociality (Krajbich et al., 
2009). The Hare et al. (2010) study shows that activity in VMPFC is positively correlated with charitable 
donations consistent with the view that emerged from many other studies, that this area of the brain 
encodes decision utility (V. S. Chib, et al., 2009, A. Rangel and T. Hare, 2010). In addition, the value 
signal in the VMPFC is modulated by other signals in the posterior superior temporal cortex (pSTC) 
which have been shown to be important for overcoming egocentricity bias, indicating that VMPFC and 
pSTC activity are key components of the neural circuitry of social preferences. This does not mean that 
these areas are exclusively dedicated to the processing of social preferences. Rather, in the case of the 
VMPFC, for example, studies suggest a general role for this region in integrating emotional feelings 
about costs and benefits, regardless of whether these choices involve economic consumption goods or 
“non-economic” goods such as the subjective value of acting altruistically.  

The dorsolateral prefrontal cortex (DLPFC) probably also plays an important role in the processing 
of decisions involving social preferences (Alan G. Sanfey et al., 2003). This study examined the neural 
circuitry involved in the recipient’s behavior in an ultimatum game where the rejection of low positive 
offers involves a motivational conflict between fairness and economic self-interest. It reports activation of 
bilateral DLPFC and bilateral anterior insula (AI) in the contrast between “unfair>fair” offers. In addition, 
the higher the activation of right AI, the more likely a subject is to reject an unfair offer, suggesting that 
AI activation may be related to the degree of emotional resentment of unfair offers. The DLPFC 
activation may represent the cognitive control of the emotional impulse to reject unfair offers.  

The interpretation that DLPFC activity represents the cognitive control of the impulse to reject 
implies that interfering or disrupting DLPFC activity reduces the control of the impulse and should, thus, 
increase the rejection rate. Knoch et al. (D. Knoch et al., 2006) tested this hypothesis by reducing the 
activation in right and left DLPFC with low-frequency transcranial magnetic stimulation (TMS). 
Surprisingly, the study found that TMS of right DLPFC increases the acceptance rate of unfair offers 
relative to a placebo stimulation (from 9% to 44%), while TMS of left DLPFC did not affect behavior 
significantly (relative to a placebo condition). This finding suggests that right DLPFC is causally 
involved in controlling the impulse that pushes subjects towards accepting unfair offers, i.e., in 
controlling or weighing economic self-interest. Interestingly, the disruption of right DLPFC only affects 
subjects’ fairness related behaviors but not their fairness judgments, i.e., they still judge low offers to be 
very unfair, but they nevertheless accept them more frequently and more quickly. A similar dissociation 



between fairness judgments and fair responder behavior has been observed in Knoch et al (D. Knoch et 
al., 2008) where the authors down regulate the activity of the right DLPFC with TDCS. Another TMS 
study (D. Knoch et al., 2009) shows that the right DLPFC is also causally involved in the formation of 
individual reputations as a trustworthy agent in a repeated trust game, since disruption leads to more 
untrustworthy behavior which harms reputation. Apparently, when subjects face a trade-off between the 
short run benefit of cheating their current partner and the long-run benefit of having a good reputation 
when facing future partners in the trust game, a functioning DLPFC seems to be necessary to enable 
subjects to decide in favor of their long-run benefit. This role of the DLPFC in overcoming short-run self-
interest has also been corroborated in Spitzer et al (2007); this study shows that stronger compliance with 
a social norm in the face of a possible sanctioning threat is strongly correlated with the strength of 
DLPFC activity.  

In a recent study, Baumgartner et al. (2011) applied TMS (transcranial magnetic stimulation) and 
fMRI to responders in the ultimatum game; they were either stimulated with TMS to the right or the left 
DLPFC and one control group was not stimulated at all. Subsequently, they played the ultimatum game 
during fMRI. This combination of methods enables the examination of the causal impact of TMS on 
behavior and the identification of the neural circuitry that is causally involved in the behavioral change. 
Interestingly, subjects who received TMS to the left DLPFC or no TMS (i.e., the “normal” subjects) show 
a much higher rejection rate of unfair offers than subjects who received TMS to the right DLPFC (i.e., the 
“deviant” subjects). In addition, the normal subjects display significantly higher activity in, and 
connectivity between, the right DLPFC and the VMPFC when they receive unfairly low offers. These 
findings are consistent with the view that the activation of right DLPFC and VMPFC, and the 
connectivity between them, is causally involved in regulating the decision utility of rejecting unfair offers.  

However, brain stimulation is not the only way of establishing the causal relevance of fMRI-
identified neural circuitry for subjects’ behavior. In recent years, several papers indicate the great 
potential of pharmacological experiments. Testosterone has been shown to enhance the fairness of 
bargaining offers in the ultimatum game (C. Eisenegger et al., 2010); the neurohormone oxytocin 
increases trusting behavior but not trustworthiness (M. Kosfeld et al., 2005); the depletion of the 
neurotransmitter serotonin increases the rejection rate in the ultimatum game (M. J. Crockett, 2009, M. J. 
Crockett et al., 2008) and benzodiazepine reduces the rejection rate (K. Gospic et al., 2011). In several 
cases the pharmacological intervention was combined with fMRI so that the researchers were able to 
identify the neural circuitry causally involved in the behavioral change (T. Baumgartner et al., 2008, K. 
Gospic, et al., 2011). While space limits prevent us from going into the details these studies further 
confirm the rapid progress that has been made in recent years in this field. 

A key theme of the studies reviewed in this section is that social reward activates circuitry that 
overlaps with circuitry that anticipates and represents other types of rewards to a surprising degree. These 
studies reinforce the idea that social preferences for donating money, rejecting unfair offers, and 
punishing those who violate norms, are genuine expressions of preference. The social rewards are traded 
off with subjects’ economic self-interest; the dorsolateral and the ventromedial prefrontal cortex are likely 
to be crucially involved in the balancing and weighing of competing rewards and the computation of 
decision utilities. Non-invasive brain stimulation can alter these neural processes and subjects’ 
behaviorally expressed social preferences. This establishes the causal relevance of the identified neural 
computations for subjects’ behavior. The overall goal of this endeavor is the identification of a 
sufficiently complete model of the neural circuitry of choice in the realm of social preferences. Such a 
model necessarily overlaps with a general neural model of choice that can be used to accurately predict 
behavior and can be linked to the theoretical objects of purely behavioral models (i.e. risk aversion, 
inequality aversion, etc). However, because social preferences necessarily involve the evaluation of 
outcomes of relevant reference agents, the neural model may also include nodes and connections that are 
not necessary to explain choices in other domains.  
  



6. Strategic thinking  
 

Game theory started as applied mathematics describing “solutions” to games based on idealized 
play. Over several decades, game theory grew to include experimental studies, more psychologically 
realistic models (e.g., Camerer 2003), evolutionary modeling, and design applications. Neuroscience 
could contribute to game theory by identifying strategic algorithms that are being implemented in the 
brain. In addition, game theory could be of special use in neuroeconomics by parsing how general reward 
and learning structures combine with specialized social inference mechanisms (such as “theory of mind”) 
to determine strategic choice.  

 
This section is organized around the bold hypothesis that the neural basis of strategic thinking is 

likely to have separable components corresponding to the mathematical restrictions imposed in different 
kinds of game theory. This simplification will surely turn out to be wrong on many details. However, it is 
certainly likely that different components of strategic thinking and execution require different cognitive 
capacities that are primarily located in different brain regions (and are differentially developed across 
species). If these different kinds of cognitive capacities have special value in certain types of games, then 
there will be some association between brain regions and strategic choices.  

 
For example, a recent study (Martin et al., 2013) showed that chimpanzees make choices in two-

strategy matching pennies games which are both closer to (mixed) Nash equilibrium than comparable 
human choices, and about as statistically independent of past observations as human choices are. The 
chimps behave as game-theoretically than humans! However, in these games, the main cognitive skill is 
detecting patterns in choices by others and disguising one’s own patterns from others. Experienced young 
chimps are actually better at short term detection and spatial pattern memory than people. This example 
illustrates how a highly specialized cognitive skill could account for differences in behavior (between 
species) in a narrow class of games.  
 

We discuss four aspects of strategic thinking and what is known about neural activity during those 
types of thinking: 

 
1. Strategic awareness that outcomes are affected by actions of other players; 
2. Beliefs and iterated beliefs about what other players will do and think;  
3. Learning about the value of strategies, perhaps by reinforcement or counterfactual     “fictive” 

(model-based) learning; 
4. Strategic teaching, the valuation and adjustment of behavior by anticipating the effects of one’s 

current action on another player’s beliefs and future behavior.  
  
The additional topic of social preference (how outcomes other players receive are valued) is discussed in 
a previous section of this chapter.  

 
Strategic awareness 

 
The most basic idea in game theory is that people are strategically aware that their outcomes 

depend on choices by other players. While this seems obviously true for educated adults, strategic 
awareness may well be absent for young human children, other species, in causally complex 
environments, and in disorders associated with deficits in social reasoning (such as autism).  

Neural evidence: Several studies have shown differential neural activation when playing a game 
against a human opponent, compared to a computer (e.g., Gallagher et al. 2002; McCabe et al. 2001; 
Coricelli & Nagel 2009). These papers are methodologically challenging, because it is crucial to control 
for comparability of the behavior of humans and computers (and particularly its expected reward value) in 



the presence of feedback—as a result, opacity about what the computers are doing is sometimes used. The 
general conclusion is that “mentalizing” or “theory of mind” (ToM) circuitry which is specialized to 
imaging what other people feel, believe or intend to do , is more active when playing a person rather than 
computer. The result is a bit surprising since the computer’s actions were typically chosen by a human 
too, so it is not obvious why neural activity would be different when playing a live person or a 
computerized facsimile. However, several studies have shown such differences.  

 
Beliefs, iterated beliefs and strategic choice 

 
 If players have some strategic awareness, then what strategic choices do players make if they 
know they are playing other players? Based on subjective utility theory, a natural theory is that players 
form beliefs about what other players will do and their strategic choices reveal those beliefs.   

The most elegant and prominent assumption in game theory is that beliefs are in (Nash) 
equilibrium, which is equivalent to mutually rational players having mutual knowledge of one another’s 
strategies. That is, in equilibrium  players have somehow correctly figured out what others will do and 
optimize given those beliefs. However, equilibration is unlikely to come from preplay analysis of a game, 
and instead is likely to come from experience (as in learning models), evolutionary adaptation, or preplay 
communication. 

It is highly unlikely that the brain would directly compute an equilibrium strategy. Instead, let’s 
turn attention to a family of theories which is more neurally plausible—cognitive hierarchy (CH) or level-
k theories.  

These theories assume that players form beliefs by iterating through steps of thinking (probably 
1-3 steps). The iteration starts with a level-0 player who chooses according to a simple heuristic (e.g., 
randomly, or using perceptual salience). Agents doing one or more steps of thinking compute what lower-
level thinkers will do and best-respond or imperfectly “better-respond” using a stochastic response (e.g. 
logit).12   

The behavioral evidence in support of these CH theories is that predictions about initial 
aggregate choices are typically better approximations of actual human play than equilibrium theories.  
Importantly, they appear to explain both deviations from equilibrium predictions in one-shot play, and 
also explain when equilibrium predictions are surprisingly accurate (even with no learning; see Camerer, 
Ho & Chong 2004; Crawford, Costa-Gomes & Iriberri 2010).  

Direct cognitive evidence for steps of thinking comes from eyetracking and mouse-based 
studies. These studies record what information subjects are looking at, and for how long. Then the theory 
can be tested as a joint hypothesis about information search and choices resulting from that search. For 
example, level-2 players must look at other players’ payoffs to choose strategies, but lower level players 
do not. So the theories predict an association between looking at the payoffs of other players and 
frequency of higher-level choices, The earliest studies, going back at least two decades, showed 
approximate conformity of thinking steps to associated predictions of information search by different 
types (e.g., Camerer et al. 1993; Johnson et al. 2002). More recent studies showed even clearer 
conformity of imperfect information lookup and choice (Costa-Gomes, Crawford & Broseta 2001; Costa-
Gomes & Crawford 2006; Wang, Spezio & Camerer 2010; Brocas et al. 2009).  

There is also modest to high intrapersonal reliability across games of an individual’s classified 
level type (although probably lower than levels of reliability for the most stable traits, such as IQ and 
extraversion). For example, Chong, Ho and Camerer (2005) computed a correlation of  +0.61 between a 
subject’s average estimated levels in two separate groups of 11 games. There are also modest correlations 
between estimated thinking levels and working memory (Devetag & Warglien 2003). 

Neural evidence: A small number of neuroimaging fMRI studies have explored the neural 
underpinnings of strategic belief formation and depth of thinking. 
                                                 
12 See Camerer et al. 1993; Nagel 1995; Stahl and Wilson 1995; Costa-Gomes, Crawford & Broseta 2001; Camerer, 
Ho & Chong 2004; Crawford et al., 2013.  



Bhatt and Camerer (2005) considered the processes of choice and first- and second-order belief 
formation in two-player, dominance-solvable matrix games with 2-4 strategies. In each trial subjects 
either made a choice in the game, guessed what the other player would do (i.e., stated first order beliefs) 
or guessed the other player’s first order beliefs about their own choice (i.e., stated second order beliefs). 
In order to isolate the process of reasoning without ‘interference’ from learning, there was no feedback.  

A simple hypothesis consistent with CH modeling is that many subjects will use different 
reasoning processes in choosing and forming beliefs. For example, nonstrategic  players may spend no 
time forming a belief; this could be manifested as substantially greater activity in value-oriented regions 
during choice than in the guessing-about-others condition. Indeed, when a subject’s choices and beliefs 
were out of equilibrium13, the choice task elicited significantly more activity in medial prefrontal cortex 
(mPFC) and dorsolateral prefrontal cortex (DLPFC), which is involved in working memory and self-
control). However, when subjects’ choices and beliefs were in equilibrium, activation patterns were not 
significantly different in choice and guessing trials except in a small area of the ventral striatum  
(probably associated with differential rewards in the two types of trials). No such striatal difference was 
present in out-of-equilibrium trials.  

Bhatt and Camerer defined a measure of “strategic intelligence” (SIQ) based on each player’s 
expected payoffs and belief accuracy.  High SIQ subjects had significantly greater activation in the 
caudate (a reward-related area) and precuneus.  Conversely, people with lower SIQ had significantly more 
activation in the left insular cortex, an area strongly associated with emotional discomfort, and response 
to financial risk and uncertainty (e.g., Mohr, Biele & Heekeren 2010). Thus, poor strategic performance 
seems to reflect high internal strategic uncertainty, as ‘felt’ by in the insula. 

Kuo et al. (2009) did fMRI during play of asymmetric dominance-solvable games and matching 
games. Games varied in difficulty (corresponding to the number of steps of iterated reasoning necessary 
to reach Nash equilibrium).  Activation in the precuneus scaled with the difficulty of these games. They 
also studied simple matching games that had the same formats as the dominance solvable games, but in 
which reward was maximized if you chose the same target as a partner. They found that the middle insula 
correlated with a measure of how “focal” the equilibrium was (and also with expected payoff), as if 
focality is associated with a bodily “gut feeling” projected to insula.  

Coricelli and Nagel (2009) focused on the “p-beauty contest”, in which subjects choose numbers 
in the interval [0,100] and win if their number is the closest to a multiplier p times the average number.  
Their subjects played a series of games with different values of the multiplier p (and no feedback) against 
both humans and computers (which chose randomly from all numbers).  

They were able to classify people by behavior rather sharply into level-1 thinkers, who choose 
close to p50 in most games, and level-2 thinkers who choose p250. They found significantly more 
activation in dmPFC (paracingulate) and vmPFC and bilateral tempero-parietal junction (TPJ) (see Figure 
1). These are areas that are well-established to be part of a candidate “theory of mind” circuit used to 
compute the intentions, beliefs and desires of others (e.g., Amodio & Frith, 2006).  

Yoshida et al. (2008) create a recursive-belief model similar to the cognitive hierarchy 
approaches and apply it to the  stag hunt game. In their games, two low-value rabbits are present on a 
two-dimensional grid. A high-value stag is also present. Two players make sequential one-step moves 
either toward the stag (who also moves) or toward a rabbit (which does not) The game ends when either 
of the players reaches a rabbit target or when the two players end up adjacent to the stag, ‘capturing’ it. 

They formalize a Bayesian notion of steps of recursive anticipation. The model creates trial-by-
trial computational regressors. Using fMRI, they find that variation in the distribution of opponent 
thinking steps (strategic uncertainty, measured by the distribution’s entropy) activates dorsomedial 
prefrontal cortex (paracingulate) and posterior cingulate. The level of strategy the subject seems to use is 
correlated with dlPFC  (dorsolateral prefrontal cortex) as well as frontal eye field and superior parietal 

                                                 
13 Being “in equilibrium” is defined behaviorally, as trials in which choices are best responses to beliefs, and both 
beliefs and second-order beliefs match choices and beliefs of other players. If players are rational (best-responding) 
and think others are rational, these belief-matching constraints are sufficient for Nash equilibrium. 



lobule. They suggest that paracingulate is activated in mentalizing to determine opponent’s strategic 
thinking type, and DLPFC is involved in implementing planning ahead and working memory during 
‘deep’ strategic thinking’ (planning ahead several moves, as in chess, especially given their visual display 
of the game on a grid). 

 
Learning 

 
Many empirical studies have examined how human (and monkey) agents learn to adjust their 

strategies in games (see Camerer 2003, ch. 6). While there is a huge literature on the neuroscience of 
animal and human learning in simple decisions, there is only a small intersection combining estimation of 
empirical models of human learning and neural observation.   

Two popular theories are reinforcement, and belief learning (e.g., fictitious play). In 
reinforcement learning, strategy values are adjusted by payoffs (or prediction error). In belief learning, 
beliefs about what others will do are adjusted by observation and then used to compute expected payoffs 
and guide choice. One popular form of belief learning is weighted fictitious play (WFP), in which beliefs 
are a weighted average of observed past choices by opponents. Camerer and Ho (1999) noted that 
learning according to WFP is exactly the same as a general type of reinforcement learning in which 
strategies that are not chosen are also reinforced according to a foregone payoff, which they call EWA but 
has been renamed “fictive learning” in decision neuroscience. This kind of fictive learning is sometimes 
called “model-based” because it requires a model, or understanding of how all possible choices lead to 
possible payoffs, in order to compute fictive payoffs from strategies that were not chosen. Presenting such 
a payoff “model”—usually a payoff matrix—is common in human experiments but is never done for 
nonhuman animal subjects; in searching for general learning rules, it is therefore useful to distinguish 
between “model-free” learning (where fictive payoffs are unknown) and model-based learning.   

From a neural point of view, the observation that WFP is a kind of reinforcement invites 
consideration of a general model in which strategy values combine both reinforced payoffs and foregone 
payoffs. In a useful class of models, the fictive weight is δ times the reinforcement weight of one, perhaps 
because those value signals are computed differently in the brain and therefore weighted differently in 
guiding behavior. Empirical estimates from behavior in many games suggest that the fictive learning 
weight δ is between 0 and 1. These data suggest subjects do use “model-based” information about 
foregone payoffs, but do not weigh that information as heavily as received rewards.  

A plausible hypothesis about locations of neural activity is that reinforced value computations are 
encoded by prediction error in the midbrain and ventral striatum (as shown by many studies). These are 
phylogenetically older regions shared by humans and many other species, an anatomical observation that 
is consistent with the vast array of evidence that reinforcement learning processes are common across 
species. Some studies indicate that regret signals are encoded in orbitofrontal cortex (OFC; Coricelli, 
Dolan, Sirigu 2007); since fictive learning is typically based on imagined counterfactuals, like those 
which create regret, it is plausible that these signals would be encoded in OFC and connected areas.  

Neural evidence: Available neuroscience studies reject the two parametric extremes in which 
there is either no fictive learning (i.e., δ = 0) and fictive learning is as strong as learning from received 
rewards (δ=1).  Lohrenz et al. (2007) find fictive learning signals in ventral striatum that are similar to 
prediction error signals from actual rewards and Mobbs et al. (2009) show activation in response to 
rewards earned by similar others, which suggests a more general model in which learning can be both 
fictive and based on learning from observing others (perhaps depending on “social distance”).  

Hayden, Pearson, and Platt (2009) also record fictive learning signals from dorsal ACC neurons 
in rhesus monkeys. They show that the monkeys do respond to fictive rewards (if a high-value target was 
in a location they didn’t choose, they are more likely to choose it next time). The ratio of neural firing 
rates in response to fictive versus experienced reward is around 0.70, which suggests a crude estimate of 
the fictive learning relative weighting δ parameter.  



Fictive learning is a special kind of “model-based” learning in computational neuroscience. In 
model-based learning, agents use the knowledge of how the values of multiple choice objects are linked—
through a “model”— to update assigned values of all objects after receiving a learning signal from one 
chosen object. Hampton et al. (2008) show clear learning signals corresponding to model-based learning.   

Thevarajah et al. (2010) looked for neural correlates of EWA learning in a matching pennies 
game. In their experiment two rhesus macaques made choices, through eye saccades, against a 
computerized opponent designed to exploit temporal patterns in the macaques’ play. Single-unit electrode 
recording measured neural firing in intermediate superior colliculus (SCi). SCi is a region that 
topographically maps saccade sites, and also projects to premotor neurons and also to dopaminergic sites 
in the midbrain (ventral tegmental area and substantia nigra) so it is a sensible a priori candidate for 
encoding the value of a saccade (i.e. a strategy choice, given how the game is played). They find a strong 
correlation between SCi firing rates and EWA strategy values in one monkey, and a modest correlation in 
the other monkey.  
 

Strategic teaching and influence value 
 

The learning theories described in the last section above are all adaptive; that is, they adjust either 
estimated strategy value or adjust beliefs in response to previous experience. A further step is 
“sophistication”—that is, players form beliefs using a model of how other players are learning. There is 
some evidence that models with sophistication (and learning to be more sophisticated) fit information 
lookup and choice data better than simple adaptive models (e.g., Stahl, 1999; Camerer, Ho & Chong, 
2004).14  

Sophistication should interact with the nature of repeated matching. When players expect to play 
together repeatedly, if one player is sophisticated it can pay for her to take actions that deliberately 
manipulate the learning process of the other player.  A common example of this sort of “strategic 
teaching” is bluffing in poker: Bluffing is betting aggressively to make opponents believe you have a 
winning hand, so they should quit betting and fold their cards. It is well known that an incentive to 
“strategically teach” can arise in repeated games, and also in games where a long-run player is matched 
with a sequence of short-run players (Fudenberg and Levine, 1998).  

Hampton, Bossaerts and O’Doherty (2008) did fMRI to study strategic teaching in a two-player 
“work-shirk” or monitoring game. The work-shirk game is a variant of asymmetric matching pennies, in 
which workers can work or shirk, and employers can monitor or not monitor. Workers prefer to match 
(e.g., working and monitoring) and employers prefer to mismatch (e.g. monitoring shirking workers). In 
early work, Platt and Glimcher (1997) recorded neural firing in lateral intraparietal cortex (LIP) and found 
it associated closely with expected payoffs in this game, for monkeys playing computerized opponents. 
Simple reinforcement learning fits these neural signals well in monkeys  (see also Seo, Barraclough & 
Lee, 2009). 
 The authors fit three models: reinforcement learning; fictitious play; and an “influence model” 
where players account for the impact of current actions on their own value in the future through its 
influence on the opponent’s reinforcement learning. For example, an employee who chooses Work when 
the employer picked Monitor earns 0. However, if a learning employer is then likely to switch to Not 
Monitor in the future, the Work choice has an “influence value” because it raises the future value of 
Shirking (by escaping Monitoring).  
 Hampton et al. found that for about half the subjects choices were better fit by including an 
influence value term (half were not). They analyzed two areas generally thought to be part of the 

                                                 
14 Notice that while these theories can be difficult to distinguish using only observed choices, it is easy to 
distinguish them with cognitive data: Adaptive players do not need to look at the payoffs their opponents get, but 
sophisticated players do need to look at those payoffs. The fact that players usually do attend to payoffs of others 
players (e.g., Knoepfle, Wang and Camerer, 2009) is evidence for sophistication. 



mentalizing circuit, the superior temporal sulcus (STS) and dorsomedial prefrontal cortex (dmPFC). They 
found that these areas correlated with different aspects of the influence model. dmPFC activity correlated 
with predicted reward in the influence model at the time of choice; since dmPFC is often active in theory 
of mind, this indicates a prospective calculation of future value based on how opponents will learn and 
respond. In addition, the STS is correlated with the component of prediction error related to second-order 
beliefs. That is, this area’s activity correlated with how much the influence model predicted the opponent 
should adapt his behavior based on your action (at the time that feedback is seen).   

Direct strategic deception is shown by Bhatt, Lohrenz, Camerer and Montague (2010) in 
bargaining. Two players, a buyer and a seller, play 60 rounds of the game. At the beginning of each round 
the “buyer” is informed of her private value V, which is an integer drawn with uniform probability 
between 1 and 10 (Figure 2).  She is then asked to “suggest a price” S to the seller, an integer between 1 
and 10.  The seller sees this suggestion and sets a price P. If P < V, the trade executes and the seller and 
buyer earn P and V-P. If P > V, the trade does not execute and they get nothing. Importantly, no feedback 
about whether the trade occurred is provided to either player after each round. 
 By regressing each buyer’s suggestions S against their values V, Bhatt et al. could classify buyers 
into three types. One type showed no strong correlation. A second “incrementalist” type typically had a 
strong positive correlation (and high R2), due to deliberate revelation of values (in an effort to increase 
efficiency). A third “strategist” type used a counterintuitive strategy of sending high S suggestions when 
they have low values V, and sending low suggestions when they have high values (so S and V are 
negatively correlated).  (This behavior is predicted as level-2 in a modified CH model.)  The idea is that 
naïve level-1 sellers will attempt to make inferences about how “honest” a buyer is by considering the 
history of suggestions they see in the game. If those sellers see only low values of S they will infer that 
the buyer is low-balling and will ignore the suggestions15.  However, if they see a relatively uniform 
mixture of suggestions, they will think the buyer must be prosocially revealing something about their 
values to increase gains from trade. They will tend to trust the suggestions, choosing low prices when 
they see low suggestions and high prices when they see high suggestions.  Level-2 strategist buyers will 
realize this and use low-value rounds, where they don’t stand to earn much anyway, to generate 
credibility so that they can reap all the rewards from very low prices during the high-value rounds.  

Bhatt et al. found that during the buyer’s price suggestion period, there is stronger activity in the 
DLPFC for strategists compared to other subjects. This could be interpreted as evidence of active working 
memory (keeping track of the distribution of recent suggestions in order to make it look honest) or 
inhibition of a natural instinct to make suggestions which are positively correlated with value. There is 
also unusually large activity for strategists when they receive a high-value signal in STS close to the 
region observed in Hampton et al (2008) (and hence must bluff the most by suggesting a low price)..  

For sellers who are judging how much information is conveyed by a buyer’s price suggestion, 
Bhatt et al. (2012) found that activity in bilateral amygdala was correlated with a seller’s “suspicion”, as 
measured by how closely the sellers’ price offers matched the buyers’ suggestions. A low correlation 
indicates suspicion and is associated with amygdala activity, consistent with an established role of 
amygdala in rapid vigilance toward threat (e.g., fear response).  

Together, these studies show that there is some match between computations inferred from 
choices (influence value and “strategizing”) and regions thought to be involved in value calculation and 
mentalizing, and in emotional judgments associated with economic suspicion.    

 
Montague and several colleagues have explored many aspects of a 10-period repeated trust game 

using fMRI. King-Casas et al. (2005) found signals in the caudate nucleus of the trustee brain in response 
to positive (“benevolent”) reciprocity by the investor. This suggests the brain is computing a rather 
complex kind of social reward based on an anticipation of future responses. In addition, there is evidence 

                                                 
15 Note that the unique Nash equilibrium is for no information to be translated (called “babbling” in game theory 
jargon).  



that activity in the caudate region occurs earlier and earlier across later rounds of the experiment, by about 
14 seconds, signaling a behavioral “intention to trust” well ahead of the actual behavior.  

More recently, Montague’s group has used trust games as a tool for doing “computational 
psychiatry”— that is, exploring how disorders are associated with disruption of conventional neural 
computations that are typically adaptive.   

King-Casas et al. (2008) consider behavior and neural activity during the trust game in subjects 
with borderline personality disorder. Borderline personality disorder (BPD) is characterized by emotional 
disregulation, including some level of paranoia, often leading to unstable personal relationships. In the 
King-Casas experiment, subjects with BPD were paired as trustees with healthy investors matched on 
education, IQ, and socioeconomic status, and played 10 rounds of the trust game.   

The major behavioral finding is that pairs that included a BPD subject earned significantly less 
money in total than those involving two healthy subjects.  This appears to be due to markedly lower levels 
of investment in the later rounds of the game by investors when playing with a BPD trustee.  In healthy 
pairs, breakdowns of cooperation were often followed by “coaxing” behavior by the trustees: trustees 
would repay all or most of the money they receive during the trial.  This signaled trustworthiness to the 
investor and often restored a cooperative interaction.  Investments appeared to decrease in these pairs 
because BPD subjects failed to effectively signal their trustworthiness to the investors via this coaxing 
behavior. 

The study found that people with BPD had significantly decreased activation in the anterior insula 
(aIns) in response to low investments as compared to controls.  Activity in aINS has often been linked to 
subjects experiencing emotional discomfort, perhaps accompanying a violation of social norms (e.g., low 
offers in the ultimatum game; Sanfey et al., 2003).  A lack of activity here when BPD subjects see low 
investment suggests a failure to interpret those low investments as a lack of trust in response to trustee 
norm violations.  The authors hypothesize that this failure to detect a violation of social norms impairs the 
ability of the BPDs to respond appropriately with coaxing.  In turn this failure to coax leads to decreased 
cooperation throughout the experiment and fewer returns to both parties. 
 Chiu et al. (2008) find that autistic subjects had much weaker signals in regions of cingulate 
specialized to “self” signals about payoffs and actions of oneself. 
 

Discussion of Strategic Neuroscience 
 
As noted in the introduction, the goal of neuroeconomics is not to find a special brain area for 

each task. Quite the opposite: The hope is that common patterns of circuitry will emerge which will 
inform debates about the computations that are performed, and suggest new theories of behavior and new 
predictions. Strategic neuroscience is just beginning, but there is some tentative convergence about 
activity in four regions across studies: mPFC, DLPFC, the precuneus, and the insula. The locations of 
activity described in this section are identified in three brain “slices” and shown in Figures 2A-C. 

mPFC: Activation in dorsal  mPFC was found when choices were out of equilibrium (Bhatt & 
Camerer 2005), among higher-level thinkers (Coricelli & Nagel 2009), when the other player’s 
sophistication is uncertain (Yoshida et al. 2008), and when computing influence value (Hampton et al. 
2008). This region is active in many social cognition tasks including self-knowledge and perspective 
taking (Amodio & Frith 2006; D'Argembeau et al. 2007) and in some non-social tasks which require 
cognitive control (Ridderinkhof et al. 2004; Li et al. 2006). Amodio and Frith (2006) hypothesize that the 
region is involved with modulating behavior based on anticipated value, with the most posterior areas 
dealing with simple action values, and representations getting increasingly abstract and complex moving 
forward toward the frontal pole. 

There is very tentative evidence consistent with this hypothesized posterior-anterior value 
complexity gradient, as measured by the y-coordinate in x-y-z space16: The simplest behavior is probably 
                                                 
16 A higher positive value of y is further forward, or more anterior, in the brain; more negative values are more 
posterior toward the back of the brain. Similarly, x values range from the left side (most negative) to the right side 



in Bhatt and Camerer (y=36), two-step thinking is a little more complex (Coricelli & Nagel, 2009, y=48) 
and influence value is rather complex (Hampton et al. 2008, y=63).  

dlPFC: The dorsolateral PFC is thought to be involved in working memory (which is necessary 
for doing “I think he thinks…” types of calculations) and also in inhibition of rapid prepotent responses 
(such as implementing patient plans, e.g., McClure et al 2004, 2007;  resisting tempting foods; Hare, 
Rangel & Camerer 2009). In the studies in this section, activity in the dlPFC is seen in Bhatt and Camerer 
(strategic choice out of equilibrium), Coricelli and Nagel (correlated with higher-level thinking), Yoshida 
et al. (higher-level thinking), and Bhatt et al. (strategizing price suggestions in bargaining). These results 
suggest dlPFC may be necessary for a combination of working memory and executive control required to 
play strategically at high levels. Importantly, Knoch et al. (2009) found that application of disruptive 
TMS to right dlPFC reduced the tendency of players to build up reputations in partner-matching repeated 
trust games (with no such change in anonymous stranger-matching games).   

Precuneus: Precuneus activity is seen in Bhatt and Camerer (2005), Kuo et al. (2009), and Bhatt 
et al. (2010). The precuneus has reciprocal connections with many of the other areas mentioned 
throughout this chapter including the mPFC, the cingulate including both the ACC and retrosplenial 
cortices, and the dorsolateral prefrontal cortex. 

The precuneus has been implicated in a host of tasks including episodic memory retrieval 
(Shallice et al. 1994, Fletcher et al. 1995, Lundstrom et al. 2003, Addis et al. 2004), attention guidance 
and switching both between objects, and among object features (Culham et al. 1998; Le, Pardo & Hu 
1998; Nagahama et al. 1999; Simon et al. 2002), a variety of imagery tasks (Cavanna & Trimble 2006), 
and perspective taking (Vogeley et al. 2004; Vogeley et al. 2001; Ruby & Decety 2001). Precuneus is also 
one of the “default network” areas that are unusually active when subjects are conscious and resting 
(Raichle et al. 2001).  

Our hunch is that it is unlikely that the precuneus plays a special role in strategic thinking. 
Instead, the activity observed in a few studies is likely to be due to the fact that attentional control and 
perspective taking are important for complex strategic valuation. A fruitful way to learn more would be to 
vary a single dimension of games, such as symmetry versus asymmetry, which are designed to require 
more perspective taking and attentional control, and see if precuneus is actually more active.  

Insula: Insula activity appears in Bhatt and Camerer (correlated with low strategic payoff and 
accuracy) and Kuo et al. (2009) (correlated with focality in matching games). The insula is thought to be 
responsible for “interoception”, that is, the perception of one’s own internal state.  It has been proposed 
that the information received in the posterior insula is processed and re-represented in the anterior insula 
as subjective emotion, and is also important for a feeling of self (Craig 2002; Critchley 2005; Keysers & 
Gazzola 2007).  It may be that middle insula activity reflects more basic visceral sensations in these 
games—like intuitive impulses corresponding to generalized strategic uncertainty rather than to more 
analytical processing. (Note the well-established role of insula in encoding financial uncertainty, 
discussed in the section on “Risky Choice” in this chapter.)  
 

Summary 
 
Game theory has emerged as a standard language in economics and is the focus of thousands of 

behavioral experiments. So far, a small number of fMRI studies and several studies using variants of 
eyetracking are reasonably supportive of cognitive hierarchy-type models, as models of both mental 
computation and initial  choices. Game theory has also influenced social neuroscience by providing 
paradigms and predictions (e.g. Rilling and Sanfey, 2011).  

Given that there is a huge space of possible theories covering strategic thinking, learning and teaching 
(or influence), it may be difficult to rapidly figure out which theories predict best, under what 
circumstances, using only choices. Theorists and experimenters struggle to find games and treatments that 
                                                                                                                                                             
(most positive), and z-values range from most negative (the inferior part or bottom of the brain) to the most positive 
(the superior part or top of the brain). 



can separate (or identify) distinctive predictions of theories. If theories of strategic choice are described in 
terms of what cognitions and emotions are neurally computed to implement those choices, then 
competing theories could—in principle—be more efficiently distinguished using a combination of choice 
and neural data, than using choice data alone. Substantial progress using the combination of choice and 
information search data has already been made, in several studies. In addition, since many of the 
candidate brain regions identified so far in fMRI are close to the cortical surface (such as TPJ, dmPFC), 
other tools such as EEG and TMS which record or disrupt electrical activity close to the cortical surface 
could prove particularly useful in checking robustness of results from fMRI and lesion studies.  

Finally, it is useful to ask again—Why care about where? That is, suppose we believed (with more 
confidence than we have now) that the common areas shown in Figures 2A-C are computing aspects of 
strategic value or action. What can be done with that information? The answer is that we can couple 
knowledge of function in these regions with emerging knowledge of how these regions work in different 
species, develop across the human life cycle (both childhood tissue growth and decline in aging), are 
connected to other regions, and are affected by gene expression, neurotransmitters, and drugs. Combining 
functional and anatomical knowledge will lead to predictions about the types of animals and people who 
may behave more or less strategically (as in Figure 1). Predictions can also be made about how activity 
will be modulated by changes in representations, or simply environmental effects, which either overload 
or activate these regions.   

 
 
Conclusion 

 
This chapter reviews the nascent, rapidly growing literature in neuroeconomics, paying particular 
attention to experimental methods.   
            There are five principal motivations for pursuing neuroeconomic research.   First, some 
researchers – even some economists -- are willing to study neuroscience for its own sake.  Second, 
neuroeconomic research provides a new way of imperfectly measuring human well-being.  Third, 
neuroeconomic concepts serve as catalysts for model development.  Fourth, neuroeconomic methods 
provide a new, powerful way to test economic models which ambitiously specify both how choices 
depend on observables, and what computational mechanism leads to those choices. Fifth, neuroeconomics 
will improve our ability to predict behavior and to design interventions that (i) influence the behavior of 
others and (ii) manage our own appetites and drives.  

The paper focused on two methodology topics -- basic neurobiology and neuroimaging – and four 
applications – risk preferences, intertemporal choice, social preferences, and strategic behavior.  Many 
other important topics needed to be omitted for lack of space.  Active work in neuroeconomics is taking 
place in every choice domain. 

 Even blindfolded, a pedestrian could walk across a college campus. But she would travel more 
efficiently with full use of her senses. Likewise, economists should remove our own methodological 
blindfold.  At the moment, the cost of wearing a neuroscientific blindfold is not great, since neuroscience 
is in its infancy.  However, as neuroscience methods continue to rapidly advance it is likely that 
neuroscientific insights will significantly improve our economic vision. 
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Figure 1: Differences in brain activity in response to playing a human versus playing a computer. 

For level-2 players the significant differences are observed at mPFC, vmPFC, and TPJ.  For 
level-1 players the significant differences are observed at rACC. (Source: Coricelli and 
Nagel PNAS 2009).  [permission TBA] 

 
 
 
 
 
 
FIGURE 2 WILL BE PROVIDED BY COLIN CAMERER 
 
 
 
Figure 2: Regions of activity in various game theoretic and mentalizing tasks. (A) Sagittal slice 

from back (posterior) to front (anterior) of the brain, x=5. Shows activity in 
precuneus/posterior cingulate (posterior) and dorsomedial prefrontal cortex (DMPFC) 
(anterior). (B) Sagittal slice, x=35 shows activity in right insula. (Left insula regions are 
inverted to opposite right regions for purposes of plotting.) (C) Coronal slice from left to 
right, y=24. Shows activity in dorsolateral prefrontal cortex (dlPFC).  [NOTE: THESE 
FIGURES ARE IN A SEPARATE FILE HandbookExpEc2CamererSlices.pptx] 

 
  



References 
 
 
Abdellaoui, M., L’haridon, O., and Zank, H. (2010). Separating curvature and elevation: A parametric 

probability weighting function. Journal of Risk and Uncertainty 41, 39-65. 
 
Addis, D.R., McIntosh, A.R., Moscovitch, M., Crawley, A.P. & McAndrews, M.P. 2004, "Characterizing 

spatial and temporal features of autobiographical memory retrieval networks: a partial least squares 
approach", NeuroImage, vol. 23, no. 4, pp. 1460-1471. 

 
Ainslie, George (1991). Derivation of “Rational” Economic Behavior from Hyperbolic Discount Curves. 

American Economic Review 81: 334-340. 
 
Albrecht, Konstanze; Volz, Hirsten G.; Sutter, Matthias; Laibson, David I.; and von Cramon, D. Yves. 

(2010) What is for me is not for you: brain correlates of intertemporal choice for self and other. 
Social Cognitive & Affective Neuroscience Vol. 6, Issue 2, pp. 218-225 

 
Amodio, D.M. & Frith, C.D. 2006, "Meeting of minds: the medial frontal cortex and social cognition", 

Nature Reviews Neuroscience, vol. 7, no. 4, pp. 268. 
 
Andersen, Steffen; Harrison, Glenn W.; Lau, Morten I.; and Rutström (2008). Eliciting Risk and Time 

Preferences. Econometrica Vol. 76, No. 3, pp. 583-618 
 
Andreoni, James and Bernheim, B. Douglas (2009). Social Image and the 50-50 Norm: A Theoretical and 

Experimental Analysis of Audience Effects. Econometrica Vol. 77, Issue 6, pp. 1607-1636 
 
Andreoni, James and Charles Sprenger (2012) “Risk preferences are not time preferences” The American 

Economic Review 102.7 (2012): 3357-3376 
 
Angeletos, George-Marios; Laibson, David; Repetto, Andrea; Tobacman, Jeremy; and Weinberg, 

Stephen. "The hyperbolic consumption model: Calibration, simulation, and empirical 
evaluation." The Journal of Economic Perspectives 15.3 (2001): 47-68. 

 
Ariely, Dan and Wertenbroch, Klaus (2002). Procrastination, Deadlines, and Performance: Self-Control 

by Precommitment. Psychological Science Vol. 13, No. 3, pp. 219-224 
 
Ashraf, Nava; Camerer, Colin F. and George Loewenstein (2005) “Adam Smith, Behavioral Economist” 

Journal of Economic Perspectives, Vol. 19 No. 3, Summer 2005, pp. 131-145 
 
Ashraf, Nava; Karlan, Dean; and Yin, Wesley (2006). “Tying Odysseus to the Mast: Evidence from a 

Commitment Savings Product in the Philippines.” Quarterly Journal of Economics. Volume 121 
Issue (Month): 2 (May) pp. 635-672 

 
Bandettini, Peter A.; Wong, Eric C.; Hinks, R. Scott; Tikofsky, Ronald S.; and Hyde, James S. (1992). 

Time course EPI of human brain function during task activation. Magnetic Resonance in 
Medicine, Vol. 25, Issue 2, 390-397 

 
Barberis, Nicholas.  2013. The Psychology of Tail Events: A Note on Progress and Challenges. American 

Economic Review, in press. 
 

http://ideas.repec.org/s/tpr/qjecon.html


Baumgartner, Thomas; Heinrichs, Markus; Vonlanthen, Aline; Fischbacher, Urs; and Fehr, Ernst (2008). 
Oxytocin Shapes the Neural Circuitry of Trust and Trust Adaptation in Humans. Neuron Vol. 58, 
Issue 4, pp. 639-650 

 
Baumgartner, Thomas; Knoch, Daria; Hotz, Philine; Eisenegger, Christoph; and Fehr, Ernst (2011). 

Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice. Nature 
Neuroscience 14, pp. 1468-1474 

 
Bechara, Antoine; Damasio, Antonio R.; Damasio, Hanna; and Anderson, Steven W. (1994) Insensitivity 

to future consequences following damage to human prefrontal cortex. Cognition Vol. 50, Issues 
1-3, pp. 7-15 

 
Bechara, Antoine; Damasio, Hanna; Tranel, Daniel; and Damasio, Antonio R. (1997). Deciding 

Advantageously Before Knowing the Advantageous Strategy. Science Vol. 275, No. 5304, pp. 
1293-1295 

 
Becker, Gary S. and Murphy, Kevin M. (1988). “A Theory of Rational Addiction” The Journal of 

Political Economy Vol. 96, No. 4, pp. 675-700 
 
Bem, Daryl J. "Self-perception: An alternative interpretation of cognitive dissonance 

phenomena." Psychological review 74.3 (1967): 183. 
 
Benhabib, Jess; Bisin, Alberto; and Schotter, Andrew (2010). Present-bias, quasi-hyperbolic discounting, 

and fixed costs. Games and Economic Behavior 69(2), pp. 205-223 
 
Berkman, E.T., & *Falk, E.B. (2013). “Beyond brain mapping: Using the brain to predict real-world 

outcomes.” Current Directions in Psychological Science. 22(1), 45-50. *equal author 
contributions 

 
Bernheim, B. Douglas. (2008) "On the Potential of Neuroeconomics: A Critical (but Hopeful) 

Appraisal." American Economic Journal: Microeconomics 1.2: 1-41. 
 
Bernheim, B. Douglas and Antonio Rangel (2004) “Addiction and Cue-Triggered Decision Processes”, 

American Economic Review, 94(5), December 2004, pp. 1558-1590 
 
Berns, Gregory S.; Laibson, David; and Loewenstein, George (2007). Intertemporal choice—toward an 

integrative framework. Trends in Cognitive Sciences 11(11), 482-488 
 
Berger, Hans (1929). Über das Elektrenkaphalogram des Menschen. Archiv für Psychiatrie und 

Nervenkrankheiten. Vol. 87, Issue 1, 527-570 
 
Beshears, John; Choi, James J.; Christopher Harris, Laibson, David; Madrian, Brigitte C.; and Sakon, 

Jung (2013). Self Control and Liquidity: How to Design a Commitment Contract. Working 
Paper. 

 
Bhatt, M. & Camerer, C.F. 2005, "Self-referential thinking and equilibrium as states of mind in games: 

fMRI evidence", Games and Economic Behavior, vol. 52, no. 2, pp. 424. 
 
Bhatt , M. , Lohrenz , T. , Camerer , C. , & Montague , R. ( 2010 ). “Neural signatures of strategic types 

in a two-person bargaining game”, Proceedings of the National Academy of Sciences , vol. 107, no. 
46, pp. 19720–19725 . 

http://cn.isr.umich.edu/Papers/BerkmanFalk_CDPS_R1.pdf
http://cn.isr.umich.edu/Papers/BerkmanFalk_CDPS_R1.pdf


Bhatt, Meghana;  Terry Lohrenz, Colin Camerer, P. Read Montague. (2012) “Distinct contributions of the 
amygdala and parahippocampal gyrus to suspicion and uncertainty in a repeated bargaining 
game”. Proceedings of the National Academy of Sciences , 109(22):8728-8733 

 
Boggio, P.S., Campanhã, C., Valasek, C.A., Fecteau, S., Pascual-Leone, A., and Fregni, F. (2010). 

Modulation of decision-making in a gambling task in older adults with transcranial direct current 
stimulation. European Journal of Neuroscience 31, 593–597. 

 
Botvinick, Matthew M.; Braver, Todd S.; Barch, Deanna M.; Carter, Cameron S.; and Cohen, Jonathan D. 

(2001) Conflict monitoring and cognitive control. Psychological Review Vol. 108(3), pp. 624-652 
 
Braver, Todd S.; Cohen, Jonathan D.; Nystrom, Leigh E.; Jonides, John; Smith, Edward E.; and Noll, 

Douglas C. (1997) A Parametric Study of Prefrontal Cortex Involvement in Human Working 
Memory. Neuroimage 5, 49-62 

 
Braver, Todd S.; Reynolds, Jeremy R.; and Donaldson, David I. (2003) Neural Mechanisms of Transient 

and Sustained Cognitive Control during Task Switching. Neuron Vol. 39, pp. 713-726 
 
Brocas, Isabelle and Carrillo, Juan D. (2008a) Theories of the Mind. American Economic Review: Papers 

& Proceedings 98:2, 175-180 
 
Brocas, I. and J.D. Carrillo (2008b) “The Brain as a Hierarchical Organization”. American Economic 

Review, 98, 1312-1346 
 
Brocas, Isabelle, and Juan D. Carrillo (2012) "From perception to action: an economic model of brain 

processes." Games and Economic Behavior 75.1 (2012): 81-103. 
 
Brocas, I. and J.D. Carrillo (2013) “Dual-Process Theories of Decision-Making: a Selective Survey” 

Journal of Economic Psychology, Forthcoming 
 
Brocas, I., Carrillo, J.D., Wang, S. & Camerer, C.F. 2009, Measuring attention and strategic behavior in 

games with private information, Mimeo edn, Pasadena. 
 
Buračas, Giedrius T. and Boynton, Geoffrey M. (2002).  Efficient Design of Event-Related fMRI 

Experiments Using M-Sequences. NeuroImage Vol. 16, Issue 3, Part A, pp. 801-813 
 
Burks, Stephen V.; Carpenter, Jeffrey P.; Goette, Lorenz; and Rustichini, Aldo (2009) Cognitive skills 

affect economic preferences, strategic behavior, and job attachment. Proceeding of the National 
Academy of Sciences 106, No. 19, pp. 7745-7750 

 
Burock, Marc A.; Buckner, Randy L.; Woldorff, Marty G.; Rosen, Bruce R.; and Dale, Anders M. (1998). 

Randomized event-related experimental designs allow for extremely rapid presentation rates 
using functional MRI. Neuroreport Vol. 9, Issue 16, pp. 3735-3739 

 
Camerer, C.F. 2003, Behavioral game theory, Princeton University Press. 
 
Camerer, Colin F. (2007). Neuroeconomics: Using Neuroscience to Make Economic Predictions. The 

Economic Journal Vol. 117, Issue 519, pp. C26-C42 
 
Camerer, Colin F. “Goals, methods and progress in neuroeconomics” Annual Review of Economics, 

2013, in press. 



 
Camerer, C.F., Johnson, E., Rymon, T. & Sen, S. 1993, "Cognition and Framing in Sequential Bargaining 

for Gains and Losses" in Frontiers of Game Theory, eds. K.G. Binmore, A.P. Kirman & P. Tani, 
MIT Press, Cambridge, pp. 27-47. 

Camerer, C. & Ho, T.H. 1999, "Experience-weighted attraction learning in normal form games", 
Econometrica, vol. 67, no. 4, pp. 827-874. 

 
Camerer, C.F., Ho, T.H. & Chong, J.K. 2004, "A cognitive hierarchy model of games", Quarterly Journal 

of Economics, vol. 119, no. 3, pp. 861-898. 
 
Camerer, Colin F., George Loewenstein, and Drazen Prelec. 2005. “Neuroeconomics: How 

Neuroscience Can Inform Economics." Journal of Economic Literature, 43: 9-64. 
 
Camille, N., Griffiths, C. A., Vo, K., Fellows, L. K., Kable, J. W. (2011). Ventromedial frontal lobe 

damage disrupts value maximization in humans. Journal of Neuroscience, 31(20), 7527–7532. 
 
Caplin, Andrew and Mark Dean (2007) “Dopamine, Reward Prediction Error, and Economics” The 

Quarterly Journal of Economics 123.2 (2008): 663-701. 
 
Caplin, Andrew; Dean, Mark; Glimcher, Paul W.; and Rutledge, Robb B. (2010). Measuring Beliefs and 

Rewards: A Neuroeconomic Approach. The Quarterly Journal of Economics Vol. 125, No. 3, 
923-960 

 
Casey, B. J., Adriana Galvan, and Todd A. Hare. "Changes in cerebral functional organization during 

cognitive development." Current opinion in neurobiology 15.2 (2005): 239-244. 
 
Casey, B. J., Rebecca M. Jones, and Todd A. Hare. "The adolescent brain."Annals of the New York 

Academy of Sciences 1124.1 (2008): 111-126. 
 
Cavanna, A.E. & Trimble, M.R. 2006, "The precuneus: a review of its functional anatomy and 

behavioural correlates ", Brain : A journal of neurology, vol. 129, no. Pt 3, pp. 564-583. 
 
 
Chabris, Christopher F.; Laibson, David I. and J.P. Schuldt (2006). “Intertemporal Choice” The New 

Palgrave Dictionary of Economics 2 (2006) 
 
Chabris, C. F., Laibson, D., Morris, C. L., Schuldt, J. P., & Taubinsky, D. (2008). Individual laboratory-

measured discount rates predict field behavior.Journal of Risk and Uncertainty, 37(2-3), 237-269. 
 
Chen, M.K., Lakshminarayanan, V., and Santos, L.R. (2006). How Basic Are Behavioral Biases? 

Evidence from Capuchin Monkey Trading Behavior. Journal of Political Economy 114, 517-537. 
 
Chib, Vikram S.; Rangel, Antonio; Shimojo, Shinsuke and John P. O’Doherty (2009) “Evidence for a 

Common Representation of Decision Values for Dissimilar Goods in Human Ventromedial 
Prefrontal Cortex” The Journal of Neuroscience, September 30, 2009; 29(39): 12315-12320 

 
Chien D, Buxton RB, Kwong KK, Brady TJ, Rosen BR. MR diffusion imaging of human brain. J Comp 

Assist Tomogr 1990 
 



Chiu, P.H., Kayali, M.A., Kishida, K.T., Tomlin, D., Klinger, L.G., Klinger, M.R. & Montague, P.R. 
2008, "Self responses along cingulate cortex reveal quantitative neural phenotype for high-
functioning autism ", Neuron, vol. 57, no. 3, pp. 463-473. 

 
Chong, K., Ho, T.-H., and Camerer, C. F. “A cognitive hierarchy theory of games and experimental 

analysis”.  In R. Zwick (Ed.) Experimental Business Research, II.  Kluwer Academic Press, 2005.  
 
Colander, D. (2005). Neuroeconomics, the Hedonimeter, and Utility: Some Historical Links. Middlebury 

College. 
 
Colander, David. (2007) "Retrospectives: Edgeworth's hedonimeter and the quest to measure utility." The 

Journal of Economic Perspectives 21.2 (2007): 215-226. 
 
Coricelli, G., Dolan, R., Sirigu, A. (2007). Brain, emotion and decision making: the paradigmatic 

example of regret. TRENDS in Cognitive Sciences. Vol. 11, pp. 258-265. 
 
Coricelli, G. & Nagel, R. 2009, “Neural correlates of depth of strategic reasoning in medial prefrontal 

cortex”. PNAS, vol 106, no. 23, pp. 9163-8.  
 
Costa-Gomes, M., Crawford, V.P. & Broseta, B. 2001, "Cognition and behavior in normal-form games: 

An experimental study", Econometrica, vol. 69, no. 5, pp. 1193-1235. 
 
Costa-Gomes, M.A. & Crawford, V.P. 2006, “Cognition and Behavior in Two-Person Guessing Games: 

An Experimental Study”. American Economic Review, vol. 96, no. 5, pp. 1737-1768. 
 
Craig, A.D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. 

Nature Review Neuroscience 3, 655. 
 
Crawford, V., Costa-Gomes, M., and Irriberi, N. 2013. Structural models of nonequilibrium strategic 

thinking: Theory, evidence, and applications. Journal of Economic Literature, vo. 51 no. 1. pp 5-
62. 

Critchley, H.D. 2005, "Neural mechanisms of autonomic, affective, and cognitive integration", The 
Journal of comparative neurology, vol. 493, no. 1, pp. 154-166. 

 
Crockett, Molly J. (2009). The Neurochemistry of Fairness. Annals of the New York Academy of Sciences 

Vol. 1167, pp. 76-86 
 
Crockett, Molly J.; Clark, Luke; Tabibnia, Golnaz; Lieberman, Matthew D.; and Robbins, Trevor W. 

(2008). Serotonin Modules Behavioral Reactions to Unfairness. Science Vol. 320, No. 5884, pp. 
1739 

Culham, J.C., Brandt, S.A., Cavanagh, P., Kanwisher, N.G., Dale, A.M. & Tootell, R.B. 1998, "Cortical 
fMRI activation produced by attentive tracking of moving targets ", Journal of neurophysiology, vol. 
80, no. 5, pp. 2657-2670. 

 
Damasio, Antonio R. "Descartes’ error: Emotion, rationality and the human brain." New York: 

Putnam 352 (1994). 
 
D'Argembeau, A., Ruby, P., Collette, F., Degueldre, C., Balteau, E., Luxen, A., Maquet, P. & Salmon, E. 

2007, "Distinct regions of the medial prefrontal cortex are associated with self-referential processing 
and perspective taking ", Journal of Cognitive Neuroscience, vol. 19, no. 6, pp. 935-944. 

 



Davidson, R.J., Chapman, J.P., Chapman, L.J., & Henriques, J.B. (1990). “Asymmetrical brain electrical 
activity discriminates between psychometrically-matched verbal and spatial cognitive tasks.” 
Psychophysiology, 27, 528–543. 

 
Davidson, R.J., Jackson, D.C., & Kalin, N.H. (2000). Emotion, plasticity, context, and regulation: 

Perspectives from affective neuroscience. Psychological Bulletin, 126, 890–909 
 
Dekel, E., B. Lipman, and A. Rustichini (2001) “Representing Preferences with a Unique Subjective State 

Space,” Econometrica, 69, July 2001, 891–934. 
 
Dekel, Eddie; Lipman, Barton L.; and Rustichini, Aldo (2009). Temptation-Driven Preferences. Review of 

Economic Studies 76(3), pp. 937-971 
 
DellaVigna, Stefano and Malmendier, Ulrike 2004 “Contract Design and Self-Control: Theory and 

Evidence”, with Ulrike Malmendier, Quarterly Journal of Economics, 119, May, pp.353-402. 
DellaVigna, Stefano and Malmendier, Ulrike (2006). Paying not to go to the gym. The American 

Economic Review Vol. 96, No. 3 
 
De Martino, B., Camerer, C.F., and Adolphs, R. (2010). Amygdala damage eliminates monetary loss 

aversion. Proceedings of the National Academy of Sciences of the United States of America 107, 
3788-3792  

 
De Martino, B., Harrison, N.A., Knafo, S., Bird, G., and Dolan, R.J. (2008). Explaining Enhanced 

Logical Consistency during Decision Making in Autism. Journal of Neuroscience 28, 10746 –
10750. 

 
De Martino, B., Kumaran, D., Seymour, B., and Dolan, R.J. (2006). Frames, Biases, and Rational 

Decision- Making in the Human Brain. Science 313, 684-687. 
 
De Quervain, Dominique J.F.; Fischbacher, Urs; Treyer, Valerie; Schellhammer, Melanie; Schnyder, 

Ulrich; Buck, Alfred; and Ernst Fehr (2004). “The Neural Basis of Altruistic Punishment”. 
Science 305(5688), pp. 1254-1258, August 

 
Devetag, G., & Warglien, M. (2003). Games and phone numbers: Do short-term memory bounds affect 

strategic behavior? Journal of Economic Psychology, vol. 24, pp. 189-202. 
 
Disbrow, Elizabeth; Roberts, Slutsky, Daniel, Timothy, P.L.  and Krubitzer, Leah (2000). Functional MRI 

at 1.5 tesla: A comparison of the blood oxygen level-dependent signal and electrophysiology. 
Proceedings of the National Academy of Sciences of the United States of America, vol. 97 no. 7, 
pp. 9718-23.  

 
Donaldson, D.I.; Petersen, S.E.; Ollinger, J.M.; and Buckner, R.L. (2001). Dissociating State and Item 

Components of Recognition Memory Using fMRI. NeuroImage 13, 129-142 
 
Donders, F.C. (1869). On the Speed of Mental Processes. Acta Psychologica vol. 30 Attention and 

Performance II (W.G. Koster ed.),  Trans. W.G. Koster (1969) 412-431 
http://archlab.gmu.edu/people/mpeters2/Courses/Psy892-s07/Readings/Donders_1869.pdf 
 
Edgeworth, Francis (1881 [1961]). Mathematical Psychics: An Essay on the Application of Mathematics 

to the Moral Sciences. New Work: Augustus M. Kelly. 
 

http://archlab.gmu.edu/people/mpeters2/Courses/Psy892-s07/Readings/Donders_1869.pdf


Eisenegger, C.; Naef, M.; Snozzi, R.; Heinrichs, M.; and Fehr, E. (2010) Prejudice and truth about the 
effect of testosterone on human bargaining behaviour. Nature 463, pp. 356-359 

 
Ely, Jeffrey C. (2011). "Kludged." American Economic Journal: Microeconomics, 3(3): 210–31. 
 
Erev, Ido and Ernan Haruvy. (in press). Learning. In J. Kagel and A. Roth (Eds.) Handbook of 

Experimental Economics Volume 2. Princeton University Press. 
 
Falk, E.B., Morelli, S.A., Welborn, B.L, Dambacher, K., & Lieberman, M.D. (2013). “Creating buzz: The 

neural correlates of effective message propagation”. Psychological Science, 24(7) 1234-1242. 
 
Fecteau, S., Knoch, D., Fregni, F., Sultani, N., Boggio, P., and Pascual-Leone, A. (2007). Diminishing 

Risk-Taking Behavior by Modulating Activity in the Prefrontal Cortex: A Direct Current 
Stimulation Study Journal of Neuroscience 27, 12500-12505. 

 
Fehr, Ernst. “Chapter 15: Social Preferences and the Brain”. Neuroeconomics: Decision Making and the 

Brain. Edited by Glimcher, Paul W.; Camerer, Colin F.; Fehr, Ernst; and Poldrack, Russell A. 
London, UK: Academic Press, 2009. 

 
Fehr, Ernst and Camerer, Colin (2007). Social neuroeconomics: the neural circuitry of social preferences. 

TRENDS in Cognitive Sciences Vol. 11, No. 10, pp. 419-427 
 
Fehr, Ernst and Rangel, Antonio (2011). Neuroeconomic Foundations of Economic Choice—Recent 

Advances. Journal of Economic Perspectives Vol. 25, Number 4, pp.3-30 
 
Fellows, L.K. & Farah, M.J. (2007). The role of ventromedial prefrontal cortex in decision making: 

Judgment under uncertainty, or judgment per se? Cerebral Cortex, 17, 2669-2674. 
 
Figner, Bernd; Knoch, Daria; Johnson, Eric J.; Krosch, Amy R.; Lisanby, Sarah H.; Fehr, Ernst; and 

Weber, Elke U. (2010). Lateral prefrontal cortex and self-control in intertemporal choice. Nature 
Neuroscience Vol. 13, Number 5, pp. 538-539 

 
Fischl, Bruce (2012).  FreeSurfer.  Neuroimage,  vol. 62 no. 2, pp 774-781 
Fischl, Bruce; Sereno, Martin I.; Tootell, Roger B.H.; and Dale, Anders M. (1999) High-Resolution 

Intersubject Averaging and a Coordinate System for the Cortical Surface. Human Brain Mapping 
8, 272-284 

 
 FitzGerald,  Thomas H. B., Ben Seymour, Dominik R. Bach, and Raymond J. Dolan. 2010. 

Differentiable Neural Substrates for Learned and Described Value and Risk. Current Biology, 
20(20): 1823–1829. 

 
Fletcher, P.C., Frith, C.D., Baker, S.C., Shallice, T., Frackowiak, R.S. & Dolan, R.J. 1995, "The mind's 

eye--precuneus activation in memory-related imagery ", NeuroImage, vol. 2, no. 3, pp. 195-200. 
 
Forman, Steve; Cohen, Jonathan D.; Fitzgerald, Mark; Eddy, William F.; Mintun, Mark A.; and Noll, 

Douglas C. (2005) Improved Assessment of Significant Activation in Functional Magnetic 
Resonance Imaging (fMRI): Use of a Cluster-Size Threshold. Magnetic Resonance in Medicine 
Vol. 33, Issue 5, pp. 636-647 

 
Fox, C.R., and Poldrack, R.A. (2008). "Prospect theory and the brain," in Handbook of Neuroeconomics, 

eds. P. Glimcher, E. Fehr, C. Camerer & R. Poldrack.  (San Diego: Academic Press). 

http://cn.isr.umich.edu/Papers/Falk_et_al_buzz_PsychSci.pdf
http://cn.isr.umich.edu/Papers/Falk_et_al_buzz_PsychSci.pdf
http://www.psych.upenn.edu/%7Emfarah/ventromedial.pdf
http://www.psych.upenn.edu/%7Emfarah/ventromedial.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=FitzGerald%20TH%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Seymour%20B%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bach%20DR%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dolan%20RJ%5Bauth%5D


 
Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives. 19(4). 

25-42. 
 
Frederick, Shane; Loewenstein, George; and O’Donoghue, Ted (2002). Time Discounting and Time 

Preference: A Critical Review. Journal of Economic Literature Vol. XL, pp. 351-401 
 
Freud, Sigmund (1923), Das Ich und das Es, Internationaler Psycho-analytischer Verlag, Leipzig, Vienna, 

and Zurich. English translation, The Ego and the Id, Joan Riviere (trans.), Hogarth Press and 
Institute of Psycho-analysis, London, UK, 1927. Revised for The Standard Edition of the 
Complete Psychological Works of Sigmund Freud, James Strachey (ed.), W.W. Norton and 
Company, New York, NY, 1961. 

 
Friston, K. J.; Buechel, C.; Fink, G. R.; Morris, J.; Rolls, E.; and Dolan, R. J. (1997) Psychophysiological 

and modulatory interactions in neuroimaging.  NeuroImage Vol. 6, Issue 3, pp.218-229.  
 
Friston, K.J.; Zarahn, E.; Josephs, O.; Henson, R.N.A.; and Dale, A.M. (1999). Stochastic Designs in 

Event-Related fMRI. NeuroImage 10, pp. 607-619 
 
Frydman, Cary, Nicholas Barberis, Colin Camerer, Peter Bossaerts, Antonio Rangel (2013) “Using neural 

data to test a theory of investor behavior: An application to realization utility.” J Finance, in 
press. 

 
Fudenberg, D. & Levine, D. 1998, Theory of Learning in Games, MIT Press, Cambridge, MA. 
 
Fudenberg, Drew and Levine, David K.  (2006). A dual-self model of impulse control. American 

Economic Review 96(5): 1449-1476 
 
Fudenberg, Drew, and David K. Levine. "Timing and Self‐Control." Econometrica 80.1 (2012): 1-42. 
 
Fudenberg, Drew, David K. Levine, and Zacharias Maniadis. "An approximate dual-self model and 

paradoxes of choice under risk." Federal Reserve Bank of St. Louis Working Paper Series (2012). 
 
Gado, Mokhtar H.; Phelps, Michael E.; and Coleman, R. Edward (1975). An Extravascular Component of 

Contrast Enhancement in Cranial Computed Tomography. Part I: The Tissue-Blood Ratio of 
Contrast Enhancement. Radiology 117, 589-593. 

 
Gallagher, H.L., Jack, A.I., Poepstorff, A. & Frith, C.D. 2002, "Imaging the Intentional Stance in a 

Competitive Game", NeuroImage, vol. 16, pp. 814-821. 
 
Galvan, Adriana, et al. "Earlier development of the accumbens relative to orbitofrontal cortex might 

underlie risk-taking behavior in adolescents." The Journal of Neuroscience 26.25 (2006): 6885-
6892. 

 
Genovese, Christopher R.; Lazar, Nicole A.; and Nichols, Thomas (2002). Thresholding of Statistical 

Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage Vol. 15, Issue 4, 
pp. 870-878 

 

http://en.wikipedia.org/wiki/Joan_Riviere
http://en.wikipedia.org/wiki/James_Strachey


Giné, Xavier; Karlan, Dean; and Zinman, Jonathan. 2010 Put your money where your butt is: a 
commitment contract for smoking cessation. American Economic Journal: Applied Economics 
2(4), 213-235 

 
Glimcher, Paul W. Decisions, Uncertainty, and the Brain Science of Neuroeconomics. USA: MIT Press. 

(2003) 
 
Glimcher, Paul William; Kable, Joseph; and Louie, Kenway (2007). Neuroeconomic studies of 

impulsivity: now or just as soon as possible?. The American Economic Review 97(2), pp. 142-147 
 
Glimcher, Paul W., and Aldo Rustichini. 2004. “Neuroeconomics: The Consilience of Brain 

and Decision." Science, 306(5695): 447-452. 
 
Gospic, Katarina; Mohlin, Erik; Fransson, Peter; Petrovic, Predrag; Johannesson, Magnus; and Ingvar, 

Martin (2011). Limbic Justice—Amygdala Involvement in Immediate Rejection in the Ultimatum 
Game. PLoS Biology 9(5): e1001054. Doi:10.1371/journal.pbio.1001054 

 
Green, Leonard; Fry, Astrid F.; and Myerson, Joel (1994). Discounting of Delayed Rewards: A Life-Span 

Comparison. Psychological Science Vol. 5, No. 1, 33-36 
 
Greene, Joshua D.; Sommerville, R. Brian; Nystrom, Leigh E.; Darley, John M.; and Cohen, Jonathan D. 

(2001) An fMRI Investigation of Emotional Engagement in Moral Judgment. Science Vol. 293, 
No. 5537, pp. 2105-2108 

 
Grill-Spector, Kalanit and Malach, Rafael (2001). fMR-adaptation: a tool for studying the functional 

properties of human cortical neurons. Act Psychologica vol. 107, Issues 1-3, pp. 293-321 
 
Gul, F. and W. Pesendofer (2001) “Temptation and self-control” Econometrica, 2001 
 
Haacke, Mark; Brown, Robert; Thompson, Michael; and Venkatesan, Ramesh. Magnetic Resonance 

Imaging: physical principles and sequence design. 1st Edition. Wilmington, DE,, USA: Wiley-
Liss. (1999) 

 
Halevy, Yoram (2011). Time consistency: Stationarity and time invariance. Working Paper. 
 
Hämäläinen, Matti; Hari, Riitta; Ilmoniemi, Risto J; Knuutila, Jukka; and Lounasmee, Olli V. (1993). 

Magnetoencephalography — Theory, Instrumentation, and Applications to Noninvasice Studies 
of the Working Human Brain. Reviews of Modern Physics. Vol. 65, Issue 2, 413-497 

Hampton, A., Bossaerts, P. & O’Doherty, J. 2008, Neural correlates of mentalizing-related computations 
during strategic interactions in humans. PNAS, vol. 105 no. 18 pp. 6741-6746 

 
Hare, Todd A.; Camerer, Colin F.; Knoepfle, Daniel T.; O’Doherty, John P.; and Rangel, Antonio (2010). 

Value Computations in Ventral Medial Prefrontal Cortex during Charitable Decision Making 
Incorporate Input from Regions Involved in Social Cognition. The Journal of Neuroscience 30(2), 
pp. 583-590 

 
Hare, Todd A.; Camerer, Colin F.; and Rangel, Antonio (2009). Self-control in decision-making involves 

modulation of the vmPFC valuation system. Science Vol. 324, No. 5927, pp. 646-648 
 
Harris, Alison; Adolphs, Ralph; Camerer, Colin and Antonio Rangel (2011) “Dynamic Construction of 

Stimulus Values in the Ventromedial Prefrontal Cortex” PLoS ONE 6(6): e21074 



 
Harris, Christopher, and David Laibson. "Instantaneous Gratification." The Quarterly Journal of 

Economics 128.1 (2013): 205-248. 
 
Harbaugh, William T.; Mayr, Ulrich; and Burghart, Daniel R. (2007). Neural Responses to Taxation and 

Voluntary Giving reveal Motives for Charitable Donations. Science Vol. 316, No. 5831, pp. 
1622-1625 

 
Hasson, Uri; Nir, Yuval; Levy, Ifat; Fuhrmann, Galit; and Malach, Rafael (2004). Intersubject 

Synchronization of Cortical Activity During Natural Vision. Science Vol. 303, No. 5664, pp. 
1634-1640 

 
Haxby, James V.; Gobbini, M. Ida; Furey, Maura L.; Ishai, Alumit; Schouten, Jennifer L.; and Pietrini, 

Pietro (2001). Ditributed and Overlapping Representations of Faces and Objects in Ventral 
Temporal Cortex. Science Vol. 293, No. 5539, pp. 2425-2430 

 
Haxby, James V.; Guntupalli, J. Swaroop; Connolly, Andrew C; Halchenko, Yaroslav O.; Conroy, 

Bryan R.; Gobbini, M. Ida; Hanke, Michael; and Ramadge, Peter J. (2011) A Common, High-
Dimensional Model of the Representational Space in Human Ventral Temporal Cortex. Neuron 
Vol. 72, Issue 2, pp 404–416. 

 
Hayden, B., Pearson, M. & Platt, M. L. 2009, “Fictive learning signals in anterior cingulate cortex”,  

Science, vol. 324, no. 5929, pp. 948-950. 
 
Hinson, John M.; Jameson, Tina L.; and Whitney, Paul (2003). Impulsive decision making and working 

memory. Journal of Experimental Psychology: Learning, Memory, and Cognition 29(2), pp. 298-
305 

 
Houser, Joachim; Schunk, Daniel; Winter, Joachim; and Xiao, Erte (2010). Temptation and Commitment 

in the Laboratory. Institute for Empirical Research in Economics, University of Zurich Working 
Paper 488 

 
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., and Camerer, C.F. (2005). Neural Systems Responding to 

Degrees of Uncertainty in Human Decision-Making. Science 310, 1680-1683. 
 
Hsu, M., Krajbich, I., Zhao, C., and Camerer, C. (2009). Neural Response to Anticipated Reward under 

Risk is nonlinear in Probabilities. Journal of Neuroscience 29, 2231-2237. 
 
Izuma, Keise; Saito, Daisuke N.; and Sadato, Norihiro (2008) “Processing of social and monetary rewards 

in the human striatum.” Neuron Vol. 58, No. 2, pp. 284-294 
 
Johnson, Eric, Colin F. Camerer, Sankar Sen, and Talia Rymon. May 2002. "Detecting Failures of 

Backward Induction: Monitoring Information Search in Sequential Bargaining." Journal of 
Economic Theory, 104:1, 16-47  

 
Kable, Joseph W. and Glimcher, Paul W. (2007). The neural correlates of subjective value during 

intertemporal choice. Nature Neuroscience 10(12), pp. 1625-1633 
 
Kahneman, Daniel (1994). New Challenges to the Rationality Assumption. Journal of Institutional and 

Theoretical Economics 150(1), pp. 18-34 
 

http://www.sciencedirect.com/science/journal/08966273/72/2


Kahneman, Daniel (2003). “Maps of Bounded Rationality: Psychology for Behavioral Economics.” 
American Economic Review, 93(5): 1449-1475, December. 

 
Kahneman, Daniel (2011) “Thinking, Fast and Slow”  Farrar, Straus, Giroux 2011. 
 
Kahneman, Daniel and Frederick, Shane. Representativeness revisited, Attribute substitution in intuitive 

judgment. Heuristics of Intuitive Judgment: Extensions and Applications. T. Gilovich, D. Griffin 
and D. Kahneman (eds.). New York, NY, USA: Cambridge University Press (2002) 

 
Kahneman, Daniel and Frederick, Shane. (2005). A model of heuristic judgment. The Cambridge 

Handbook of Thinking and Reasoning, pp. 267-293 
 
Kahneman, Daniel, and Amos Tversky (1979) "Prospect theory: An analysis of decision under 

risk." Econometrica: Journal of the Econometric Society (1979): 263-291. 
 
Kamitani, Yukiyasu and Tong, Frank (2005). Decoding the cisual and subjective contents of the human 

brain. Nature Neurscience 8, pp. 679-685 
 
Kandel, Eric R.; Schwarz, James H.; Jessell, Thomas M. Principles of Neural Science. 4th ed. New York: 

McGraw-Hill, Health Professions Division. (2000) 
 
Kaur, Supreet; Kremer, Michael; and Mullainathan, Sendhil (2010). Self-Control at Work: Evidence from 

a  Field Experiment. CEPR Development Economics Workshop Pro conference. Mimeo, 1s76 
 
Keysers, C. & Gazzola, V. 2007, "Integrating simulation and theory of mind: from self to social 

cognition", Trends in Cognitive sciences, vol. 11, no. 5, pp. 194-196. 
 
King-Casas, B., Sharp, C., Lomax-Bream, L., Lohrenz, T., Fonagy, P. & Montague, P.R. 2008, "The 

rupture and repair of cooperation in borderline personality disorder ", Science, vol. 321, no. 5890, pp. 
806-810. 

 
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., Montague, P. R. 2005, “Getting to 

know you: Reputation and trust in a two-person economic exchange”, Science vol. 308, pp. 78-83.  
 
Kirby, Kris N. and Maraković, Nino N. (1996). Delay-discounting probabilistic rewards: Rates decrease 

as amounts increase. Psychonomic Bulletin & Review Vol. 3, Issue, pp. 100-104 
 
Klein, Arno; Andersson, Jesper; Ardekani, Babak A.; Ashburner, John; Avants, Brian; Chiang, Ming-

Chang; Christensen, Gary E.; Collins, D. Louis; Gee, James; Hellier, Pierre; Song, Joo Hyun; 
Jenkinson, Mark; Lepage, Claude; Rueckert, Daniel; Thompson, Paul; Vercauteren, Tom; Woods, 
Roger P.; Mann, J. John; and Parsey, Ramin V. (2009) Evaluation of 14 nonlinear deformation 
algorithms applied to human brain MRI registration. Neuroimage 46(3), 786-802 

 
Knoch, D., Gianotti, L.R.R., Pascual-Leone, A., Treyer, V., Regard, M., Hohmann, M., and Brugger, P. 

(2006). Disruption of Right Prefrontal Cortex by Low-Frequency Repetitive Transcranial 
Magnetic Stimulation Induces Risk-Taking Behavior. The Journal of Neuroscience 26, 6469-
6472. 

 
Knoch, Daria; Nitsche, Michael A.; Fischbacher, Urs; Eisenegger, Christoph; Pascual-Leone; and Fehr, 

Ernst (2008). Studying the Neurobiology of Social Interaction with Transcranial Direct Current 
Stimulation—The Example of Punishing Unfairness. Cerebral Cortex 18(9), pp. 1987-1990 



 
Knoch, Daria; Pascual-Leone, Alvaro; Meyer, Kaspar; Treyer, Valerie; and Fehr, Ernst (2006). 

Diminishing Reciprocal Fairness by Disrupting the Right Prefrontal Cortex. Science Vol. 314, 
No. 5800, pp. 829-832 

 
Knoch, Daria; Schneider, Frederic; Schunk, Daniel; Hohmann, Martin; and Fehr, Ernst (2009). Disrupting 

the prefrontal cortex diminishes the human ability to build a good reputation. Proceedings of the 
National Academy of Sciences of the United States of America Vol. 106, No. 49, pp. 20895-20899 

 
Knoepfle, D. T., Wang, J. T., & Camerer, C. F. 2009, “Studying Learning in Games Using Eye-

Tracking”, Journal of the European Economic Association, vol. 7, no. 2-3, 388-398.  
 
Knutson, Brian and Cooper, Jeffrey C (2005). Functional magnetic resonance imaging of reward 

prediction. Current Opinion in Neurology Vol. 18, Issue 4, pp. 411-417 
 
Knutson, Brian; Fong, Grace W.; Bennett, Shannon M.; Adams, Charles M.; and Hommer, Daniel (2003). 

A region of mesial profrontal cortex tracks monetarily rewarding outcomes: characterization with 
rapid event-related fMRI. NeuroImage 18, pp. 263-272 

 
Knutson, Brian; Rick, Scott; Wimmer, G. Elliott; Prelec, Drazen; and Loewenstein, George (2007) Neural 

Predictors of Purchases. Neuron Vol. 53, Issue 1, pp. 147-156 
 
Koenigs, Michael; Young, Liane; Adolphs, Ralph; Tranel, Daniel; Cushman, Fiery; Hauser, Marc; and 

Damasio, Antonio (2007). Damage to the prefrontal cortex increases utiliatian moral judgements. 
Nature 446, pp. 908-911 

 
Kosfeld, Michael; Heinrichs, Markus; Zak, Paul J.; Fischbacher, Urs; and Fehr, Ernst (2005). Oxytocin 

increases trust in humans. Nature 435, pp. 673-676 
 
Krajbich, Ian; Adolphs, Ralph; Tranel, Daniel; Denburg, Natalie L.; and Camerer, Colin F. (2009) 

Economic Games Quantify Diminished Sense of Guilt in Patients with Damage to the Prefrontal 
Cortex. The Journal of Neuroscience 29(7), pp. 2188-2192 

 
Krajbich, Ian; Camerer, Colin; Ledyard, John; and Rangel, Antonio (2009) Using Neural Measures of 

Economic Value to Solve the Public Goods Free-Rider Problem. Science Vol. 326, No. 5952, pp. 
596-599 

 
Krajbich, Ian, and Antonio Rangel. "Multialternative drift-diffusion model predicts the relationship 

between visual fixations and choice in value-based decisions."Proceedings of the National 
Academy of Sciences 108.33 (2011): 13852-13857 

 
Krekelberg, Bart; Boynton, Geoffrey M.; and van Wezel, Richard J.A.. Adaptation: from single cells to 

BOLD signals. (2006) TRENDS in Neurosciences Vol. 29, No. 5, pp. 250-256 
 
Kriegeskorte, Nikolaus; Simmons, W. Kyle; Bellgowan, Patrick S.F.; and Baker, Chris I. (2009) Circular 

analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience 12, pp. 
535-540 

 
Kuhnen, C.M., and Knutson, B. (2011). The Influence of Affect on Beliefs, Preferences and Financial 

Decisions. Journal of Financial and Quantitative Analysis 48 (3):  605-626 
 



Kuo, W.J., Sjostrom, T., Chen, Y.P., Wang, Y.H. & Huang, C.Y. 2009, "Intuition and deliberation: two 
systems for strategizing in the brain ", Science vol. 324, no. 5926, pp. 519-522. 

 
Kwong, Kenneth K.; Belliveau, John W.; Chesler, David A.; Goldberg, Inna E.; Weisskoff, Robert M.; 

Poncelet, Brigitte P.; Kennedy, David N.; Hoppel, Bernice E.; Cohen, Mark S.; Turner, Robert; 
Cheng, Hong-Ming; Brady, Thomas J.; and Rosen, Bruce. R. (1992) Dynamic magnetic 
resonance imaging of human brain activity during primary sensory stimulation. Proceedings of 
the National Academy of Sciences of the United States of America, vol. 89 no. 12, pp. 5675-5679 

 
Laibson, David (1997). Golden Eggs and Hyperbolic Discounting. The Quarterly Journal of Economics 

112(2), pp. 443-478 
 
Laibson, David (2001). “A Cue-Theory of Consumption.” Quarterly Journal of Economics, 66(1): 81–

119, February. 
 
Laibson, David, Andrea Repetto, and Jeremy Tobacman. Estimating discount functions with consumption 

choices over the lifecycle. No. w13314. National Bureau of Economic Research, 2007. 
 
Lakshminarayanan, V., Chen, M.K., and Santos, L.R. (2008). The Endowment Effect in Capuchin 

Monkeys. Philosophical Transactions of the Royal Society: Biological Sciences 363, 3837–3844. 
 
Le, T.H., Pardo, J.V. & Hu, X. 1998, "4 T-fMRI study of nonspatial shifting of selective attention: 

cerebellar and parietal contributions ", Journal of neurophysiology, vol. 79, no. 3, pp. 1535-1548. 
 
Le Bihan, Denis (1995). Molecular diffusion, tissue microdynamics and microstructure. NMR in 

Biomedicine, Vol. 8, Issue 7, 375-386 
 
Levy, Ifat; Lazzaro, Stephanie C.; Rutledge, Robb B.; and Glimcher, Paul W. (2011). Choice from Non-

Choice: Predicting Consumer Preferences from Blood Oxygenation Level-Dependent Signals 
Obtained during Passive Viewing. The Journal of Neuroscience 31(1), 118-125. 

 
Li, C.S., Huang, C., Constable, R.T. & Sinha, R. 2006, "Imaging response inhibition in a stop-signal task: 

neural correlates independent of signal monitoring and post-response processing", The Journal of 
neuroscience, vol. 26, no. 1, pp. 186-192. 

 
Liu, Thomas T. and Lawrence, Frank R. (2004) Efficiency, power, and entropy in event-related FMRI 

with multiple trial types: Part I: theory. NeuroImage Vol. 21, Issue 1, pp. 387-400. 
 
Loewenstein, George (1996). “Out of Control: Visceral Influences on Behavior.” Organizational 

Behavior and Human Decision Processes Vol. 65, No. 3, pp. 272-292 
 
Loewenstein, George and Ted O’Donoghue (2005) “Animal Spirits: Affective and Deliberative Processes 

in Economic Behavior” May 2005. Available at SSRN 539843. 
 
Loewenstein GF, Weber EU, Hsee CK, Welch N. Risk as feelings. Psychological Bulletin. 2001 

Mar;127(2):267-86. 
 
Logothetis, Nikos K.; Pauls, Jon; Augath, Mark; Trinath, Torsten; and Oeltermann, Axel. (2001). 

Neurophysiological investigation of the basis of the fMRI signal. Nature Vol. 412, 150-157. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=Loewenstein%20GF%5BAuthor%5D&cauthor=true&cauthor_uid=11316014
http://www.ncbi.nlm.nih.gov/pubmed?term=Weber%20EU%5BAuthor%5D&cauthor=true&cauthor_uid=11316014
http://www.ncbi.nlm.nih.gov/pubmed?term=Hsee%20CK%5BAuthor%5D&cauthor=true&cauthor_uid=11316014
http://www.ncbi.nlm.nih.gov/pubmed?term=Welch%20N%5BAuthor%5D&cauthor=true&cauthor_uid=11316014


Lohrenz, T., McCabe, K., Camerer, C.F. & Montague, P.R. 2007, "Neural signature of fictive learning 
signals in a sequential investment task", PNAS, vol. 104, no. 22, pp. 9493-9498. 

 
Long, A., Kuhn, C., and Platt, M. (2009). Serotonin shapes risky decision making in monkeys. Social 

Cognitive and Affective Neuroscience 4, 346-356. 
 
Luce, R. Duncan (1959 [1980]). Response Latencies and Probabilities. Mathematical Methods in the 

Social Sciences. Reprinted by Stanford University Press, Stanford, CA. 
 
Lundstrom, B., Petersson, K.M., Andersson, J., Johansson, M., Fransson, P. & Ingvar, M. 2003, "Isolating 

the retrieval of imagined pictures during episodic memory: activation of the left precuneus and left 
prefrontal cortex", NeuroImage, vol. 20, no. 4, pp. 1934. 

 
Martin, C., R. Bhui, P. Bossaerts, T. Matsuzawa, C. Camerer. 2013. Chimpanzees behave more game-

theoretically than humans in simple competitive interactions. Working paper.  
 
Maunsell, John H., and Van Essen, David C. (1983). Functional Properties of Neurons in Middle 

Temporal Visual Area of the Macaque Monkey. II. Binocular Interactions and Sensitivity to 
Binocular Disparity. Journal of Neurophysiology Vol. 49, No. 5, May 1983, 1148-1167. 

 
McCabe, K., Houser, D., Ryan, L., Smith, V. & Trouard, T. 2001, "A Functional Imaging Study of 

Cooperation in Two-Person Reciprocal Exchange", Proceedings of the National Academy of 
Sciences of the United States of America, vol. 98, no. 20, pp. 11832-11835. 

 
McClure, Samuel M.; Ericson, Keith M.; Laibson, David I.; Loewenstein, George; Cohen, Jonathan D. 

(2007). Time Discounting for Primary Rewards. The Journal of Neuroscience 27(21), 5796-5804 
 
McClure, Sam, David Laibson, George Loewenstein, and Jonathan D. Cohen (2004). “Separate Neural 

Systems Value Immediate and Delayed Monetary Rewards.” Science, 306(5695): 503-507, 
October. 

 
McFadden, Daniel (1980). Econometric Models for Probabilistic Choice among Products. Journal of 

Business Vol. 53, No. 3, p. S13-29 
 
Metcalfe, Janet and Mischel, Walter (1999). A hot/cool-system analysis of delay of gratification: 

Dynamics of willpower. Psychological Review Vol. 106(1), p. 3-19 
 
Mitchell, Tom M.; Shinkareva, Svetlana V.; Carlson, Andrew; Chang, Kai-Min; Malave, Vicente L.; 

Mason, Robert A.; and Just, Marcel Adam (2008). Predicting Human Brain Activity Associated 
with the Meanings of Nouns. Science Vol. 320, No. 5880, pp. 1191-1195 

 
Mobbs, D., Yu, R., Meyer, M., Passamonti, L., Seymour, B., Calder, A.J., Schweizer, S.,Frith, C.D., 

Dalgleish, T. 2009.  “A key role for similarity in vicarious reward”.  Science, vol. 324, p. 900. 
 
Mohr, P.N.C., Biele, G., and Heekeren, H.R. (2010). Neural Processing of Risk. Journal of Neuroscience 

30, 6613-6619 
 
Moll, Jorge; Krueger, Frank; Zahn, Roland; Pardini, Matteo; de Oliviera-Souza, Ricardo; and Grafman, 

Jordan (2006). Human fronto-mesolimbic networks guide decisions about charitable donation. 
Proceedings of the National Academy of Sciences of the United States of America Vol. 103, No. 
42, pp. 15623-15628 



 
Moll, Jorge; Zahn, Roland; de Oliviera-Souza, Ricardo; Krueger, Frank; and Grafman, Jordan (2005) The 

neural basis of human moral cognition. Nature Reviews Neuroscience 6, pp. 799-809 
 
Montague, P. Read and Berns, Gregory S. (2002) Neural Economics and the Biological Substrates of 

Valuation. Neuron Vol. 36, pp. 265-284 
 
Mukamel, Roy; Gelbard, Hagar; Arieli, Amos; Hasson, Uri; Fried, Itzhak; and Malach, Rafael (2005). 

Coupling Between Nueronal Firing, Field Potentials, and fMIRO in Human Auditory Cortex. 
Science 309, pp. 951-954 

 
Muraven, Mark; Tice, Dianne M. and Roy F. Beaumeister “Self-control as a limited resource: Regulatory 

depletion patterns” (1998) Journal of Personality and Social Psychology, Vol 74(3), Mar 1998, 
pp. 774-789 

 
Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, T., Yamauchi, H., Sawamoto, N., Toma, K., Nakamura, 

K., Hanakawa, T., Konishi, J., Fukuyama, H. & Shibasaki, H. 1999, "Transient neural activity in the 
medial superior frontal gyrus and precuneus time locked with attention shift between object 
features", NeuroImage, vol. 10, no. 2, pp. 193-199. 

 
Nagel, R. 1995, "Unraveling in Guessing Games: An Experimental Study", The American Economic 

Review, vol. 85, no. 5, pp. 1313-1326. 
 
O’Doherty, John P. (2004) Reward representations and reward-related learning in the human brain: 

insights from neuroimaging. Current Opinion in Neurobiology 14, pp. 769-776 
 
O’Donoghue, Ted and Rabin, Matthew (1999). Doing It Now or Later. The American Economic Review 

Vol. 89, No. 1, pp. 103-124 
 
Ogawa, S.; Tank, D.W.; Menon, R.; Ellermann, J.M.; Kim, S.G.; Merkle, H.; and Ugurbil, K. (1992) 

Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with 
magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United 
States of America, vol. 89 no. 13, 5951-5955 

 
Oster, Sharon M. and Scott Morton, Fiona M. (2005).  Behavioral Biases Meet the Market: The Case of 

Magazine Subscription Prices. Advanced in Economic Analysis & Policy Vol. 5, Issue 1 
 
Paulus, M.P., and Frank, L.R. (2006). Anterior cingulate activity modulates nonlinear decision weight 

function of uncertain prospects. Neuroimage 30, 668-677. 
 
Pavlov, Ivan Petrovich and Anrep, Gleb Vailevich. Conditioned Reflexes. London, UK: Oxford 

University Press (1927). Reprinted Mineola, NY, USA: Dover (2003) 
 
Phelps, E.S. and Pollack, R.A. (1968). On Second-best National Saving and Game-equilibrium Growth. 

Review of Economic Studies 35, pp. 185-199 
 
Plassman, Hilke; O’Doherty, John and Antonio Rangel (2007). “Cognitive Orbitofrontal Cortex Encodes 

Willingness to Pay in Everyday Economic Transactions.” The Journal of Neuroscience, 
September 12, 2007, 27(37): 9984-9988 

 



Platt, Michael L., and Paul W. Glimcher. "Responses of intraparietal neurons to saccadic targets and 
visual distractors." Journal of Neurophysiology 78.3 (1997): 1574-1589. 

 
Platt, ML and PW Glimcher. “Neural correlates of decision variables in parietal cortex” Nature, 1999 
 
Platt, M.L., and Huettel, S.A. (2008). Risky business: the neuroeconomics of decision making under 

uncertainty. Nature Neuroscience 11, 398 - 403. 
 
Poline, J.B.; Worsley, K.J.; Evans, A.C.; and Friston, K.J. (1997) Combining Spatial Extent and Peak 

Intensity to Test for Activations in Functional Imaging. NeuroImage Vol. 5, Issue 2, pp. 83-96 
 
Polyn, Sean M.; Natu, Vaidehi S.; Cohen, Jonathan D.; and Norman, Kenneth A. (2005) Category-

Specific Cortical Activity Precedes Retrieval During Memory Search. Science Vol. 310, No. 
5756, pp. 1963-1966 

 
Porcelli, A.J., and Delgado, M.R. (2009). Acute Stress Modulates Risk Taking in Financial Decision 

Making. Psychological Science 20, 278-283. 
 
Prelec, D. (1998). The Probability Weighting Function. Econometrica 66, 497-527. 
 
Preuschoff, K., Bossaerts, P., and Quartz, S.R. (2006). Neural Differentiation of Expected Reward and 

Risk in Human Subcortical Structures. Neuron 51, 381-390 
 
Rachlin, Howard, and Leonard Green. "Commitment, Choice, and Self Control." Journal of the 

experimental analysis of behavior 17.1 (1972): 15-22. 
 
Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A. & Shulman, G.L. 2001, "A 

default mode of brain function ", Proceedings of the National Academy of Sciences of the United 
States of America, vol. 98, no. 2, pp. 676-682. 

 
Ramnani, Narender and Owen, Adrian M. (2004) Anterior prefrontal cortex: insights into function from 

anatomy and neuroimaging. Nature Reviews Neuroscience 5, pp. 184-194 
 
Ramsey, Frank Plumpton (1928). A mathematical theory of saving. The Economic Journal 38(152), pp. 

543-559 
 
Rangel, Antonio and Hare, Todd (2010) Neural computations associated with goal-directed choice. 

Current Opinion in Neurobiology Vol. 20, Issue 2, pp. 262-270.  
 
Ridderinkhof, K.R., Ullsperger, M., Crone, E.A. & Nieuwenhuis, S. 2004, "The role of the medial frontal 

cortex in cognitive control", Science, vol. 306, no. 5695, pp. 443-447. 
 
Rietveld, Cornelius A.; Medland, Sarah E.; Derringer, Jaime;, Yang, Jian; Esko, Tonu et al (2013) 

“GWAS of 126,559 Individuals Identified Genetic Variants Associated with Educational 
Attainment” Science 340.6139 (2013): 1467-1471 

 
Roiser, J.P., De Martino, B., Tan, G.C.Y., Kumaran, D., Seymour, B., Wood, N.W., and Dolan, R.J. 

(2011). A Genetically Mediated Bias in Decision Making Driven by Failure of Amygdala 
Control. Journal of Neuroscience 31, 5985-5991. 

 



Rosati, Alexandra G.; Stevens, Jeffrey R.; Hare, Brian; and Hauser, Marc D. (2007). The Evolutionary 
Origins of Human Patience: Temporal Preferences in Chimpanzees, Bonobos, and Human Adults. 
Current Biology Vol. 17, Issue 19, pp. 1663-1668 

 
Rosenweig, Mark R.; Leiman, Arnold L.; and Breedlove, S. Marc. Biological Psychology: An 

Introduction to Behavioral and Cognitive Neuroscience. 4th ed. Sunderland, MA, USA: Sinauer 
Associates. (2005) 

 
Roy, C.S. and Sherrington, C.S. (1890) On the Regulation of the Blood-supply of the Brain. The Journal 

of Physiology Volume 11(1-2), 85-108, 158-7 – 158-17 
 
Royer, Heather; Stehr, Mark F.; and Syndor, Justin R. (2012). Incentives, Commitments and Habit 

Formation in Exercise: Evidence from a Field Experiment with Workers at a Fortune-500 
Company (No. w18580). National Bureau of Economic Research. 

 
Read, Daniel (2001). Is Time-Discounting Hyperbolic or Subadditive? Journal of Risk and Uncertainty 

23:1, pp. 5-32 
 
Read, Daniel; Loewenstein, George and Shobana Kalyanaraman (1999) “Mixing Virtue and Vice: 

Combining the Immediacy Effect and the Diversification Heuristic.” Journal of Behavioral 
Decision Making, Dec 1999, Vol. 12 Issue 4, pp. 257-273 

 
Read, Daniel and van Leeuwan, Barbara (1998). Predicting hunger: The effects of appetite and delay on 

choice. Organizational Behavior and Human Decision Processes Vol. 76, Issue 2, pp. 189-205 
 
Rilling, James K.; Gutman, David A.; Zeh, Thorsten R.; Pagnoni, Giuseppe; Berns, Gregory S.; and Kilts, 

Clinton D. (2002) A Neural Basis for Social Cooperation. Neuron Vol. 35, Issue 2, pp. 395-405 
 
Rilling JK, Sanfey AG. 2011. The neuroscience of social decision-making. Annual Review of 

Psychology, 62: 23-48.  
 
Rilling, James K.; Sanfey, Alan G.; Aronson, Jessica A.; Nystrom, Leigh E.; and Cohen, Jonathan D. 

(2004) Opposing BOLD responses to reciprocated and unreciprocated altruism in putative reward 
pathways. Neuroreport Vol. 15, Issue 16, pp. 2539-2243. 

 
Rodriguez, Monica Larrea; Mischel, Walter; and Shoda, Yuichi (1989). Cognitive person variables in the 

delay of gratification of older children at risk. Journal of Personality and Social Psychology Vol. 
57(2), 358-367 

 
Ruby, P. & Decety, J. 2001, "Effect of subjective perspective taking during simulation of action: a PET 

investigation of agency ", Nature Neuroscience, vol. 4, no. 5, pp. 546-550. 
 
Rustichini, Aldo (2005).  Neuroeconomics: Present and future. Games and Economic Behavior 52, pp. 

201-212 
 
Rustichini, Aldo (2008). “Neuroeconomics: Formal Models of Decision-making and Cognitive 

Neuroscience.” Neuroeconomics: Decision making and the brain. Edited by Glimcher, Paul W.; 
Camerer, Colin F.; Fehr, Ernst and Poldrack, Russell A. London, UK: Elsevier. (2009) 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Rilling%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=20822437
http://www.ncbi.nlm.nih.gov/pubmed?term=Sanfey%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=20822437


Sabuncu, Mert R.; Singer, Benjamin D.; Conroy, Bryan; Bryan, Ronald E.; Ramadge, Peter J.; 
and Haxby, James V. (2010) Function-based Intersubject Alignment of Human Cortical 
Anatomy. Cerebral Cortex 20, 130-140 
Samuelson, Paul A. (1937). A Note on Measurement of Utility. The Review of Economic Studies Vol. 4, 

No. 2, pp. 155-161 
 
Sanfey, Alan G.; Rilling, James K.; Aronson, Jessica A.; Nystrom, Leigh E.; and Cohen, Jonathan D. 

(2003). The Neural Basis of Economic Decision-Making in the Ultimatum Game. Science Vol. 
300, No. 5626, pp. 1755-1758 

 
Schneider, Walter and Shiffrin, Richard M. (1977). Controlled and Automatic Human Information 

Processing: I. Detection, Search, and Attention. Psychological Review Vol. 84, No. 1, pp. 1-66 
 
Schultz, Wolfram “Predictive reward signal of dopamine neurons.” Journal of Neurophysiology 80: 1-27, 

1998 
 
Schultz, W.; Dayan, P and PR Montague. “A neural substrate of prediction and reward” Science, 1997 
 
Seo, H., Barraclough D. J., & Lee, D. 2009, “Lateral intraparietal cortex and reinforcement learning 

during a mixed-strategy game”, Journal of Neuroscience vol. 29, pp. 7278-7289 
 
Shallice, T., Fletcher, P.C., Frith, C.D., Grasby, P., Frackowiak, R.S. & Dolan, R.J. 1994, "Brain regions 

associated with acquisition and retrieval of verbal episodic memory", Nature, vol. 368, no. 6472, pp. 
633. 

 
Shamosh, Noah A. and Gray, Jeremy R. (2008). Delay discounting and intelligence: A meta-analysis. 

Intelligence 36(4), 289-305 
 
Shiv, Baba and Fedorikhin, Alexander (1999). Heart and Mind in Conflict: The Interplay of Affect and 

Cognition in Consumer Decision Making. Journal of Consumer Research 26(3), pp. 278-292 
 
Siegel, Shepard (1984). Pavlovian conditioning and heroin overdose: Reports by overdose victims. 

Bulletin of the Psychonomic Society Vol. 22(5), pp. 428-430 
 
Simon, O., Mangin, J., Cohen, L., Le Bihan, D. & Dehaene, S. 2002, "Topographical Layout of Hand, 

Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe", Neuron, vol. 33, no. 3, 
pp. 475. 

 
Singer, Tania; Seymour, Ben; O’Doherty, John P.; Stephan, Klaas E.; Dolan, Raymond J.; and Frith, 

Chris D. (2006) Empathetic neural responses are modulated by the perceived fairness of others. 
Nature 439, pp. 466-469 

 
Smith, Adam. 1759 [1981]. The Theory of Moral Sentiments. D.D. Raphael and A.L. Macfie, eds. Liberty 

Fun: Indianapolis. 
 
Smith, Adam. 1776 [1981]. An Inquity into the Nature and Causes of the Wealth of Nations, Volumes I 

and II. R.H. Campbell and A.S. Skinner, eds. Liberty Fund: Indianapolis. 
 
Smith, Alec B.; Bernheim, B. Douglas; Camerer, Colin F. and Antonio Rangel. “Neural activity reveals 

preferences without choices.” Working paper.  



 
Smith, Stephen M. and Nichols, Thomas E. (2009) Threshold-free cluster enhancement: Addressing 

problems of smoothing, threshold dependence and localization in cluster inference. NeuroImage 
Vol. 44, Issue 1, pp. 83-98 

 
Snowberg, E., and Wolfers, J. (2010). Explaining the Favorite-Long Shot Bias: Is it Risk-Love or 

Misperceptions? Journal of Political Economy 118, 723-746. 
 
Sokol-Hessner, P., Camerer, C.F., and Phelps, E.A. (2010). "Getting Some Perspective: Neural Correlates 

of Regulation in Financial Decision-Making".). 
 
Sokol-Hessner, P., Delgado, M.R., Hsu, M., Camerer, C., and Phelps, E.A. (2009). Thinking like a trader: 

Cognitive re-appraisal and loss-aversion. Proceeding of National Academy of Sciences 106, 5035-
5040. 

 
Spitzer, Manfred; Fischbacher, Urs; Herrnberger, Bärbel; Grön, Georg; and Fehr, Ernst (2007). The 

Neural Signature of Social Norm Compliance. Neuron Vol. 56, Issue 1, pp. 185-196 
 
Squire, Larry R.; Berg, Darwin; Bloom, Floyd; du Lac, Sascha; and Ghosh, Anirvan. Fundamental 

Neuroscience. 3rd ed. Amsterdam, NL; Boston, MA, USA : Elsevier/Academic Press. (2008). 
 
Stahl, D. (1999). Sophisticated learning and learning sophistication. Working paper. 
 
Stahl, D. and P. Wilson 1995, "On Players' Models of Other Players: Theory and Experimental 

Evidence", Games and Economic Behavior, vol. 10, no. 1, pp. 218. 
 
Sternberg, Saul. (1969) Act Psychologica 30 Attention and Performance II (W.G. Koster ed.), 276-315 
 
Strotz, Robert Henry (1955). Myopia and inconsistency in dynamic utility maximization. The Review of 

Economic Studies 23(3), pp. 165-180 
 
Symmonds, M., Emmanuel, J.J., Drew, M.E., Batterham, R.L., and Dolan, R.J. (2010). Metabolic State 

Alters Economic Decision Making under Risk in Humans. PLoS ONE 5, e11090. 
 
Tabibnia, Golnaz; Satpute, Ajay B.; and Lieberman, Matthew D. (2008) The Sunny Side of Fairness: 

Preference for Fairness Activates Reward Circuitry (and Disregarding Unfairness Activates Self-
Control Circuitry). Psychological Science Vol. 19, No. 4, pp. 339-347 

 
Takahashi, Hidehiko; Kato, Motoichiro; Matsuura, Masato; Mobbs, Dean; Suhara, Tetsuya; and Okubo, 

Yoshiro (2009). When Your Gain Is My Pain and Your Pain Is My Gain: Neural Correlates of 
Envy and Schadenfreude. Science Vol. 323, No. 5916, pp. 937-939 

 
Takahashi, H., Matsui, H., Camerer, C.F., Takano, H., Kodaka, F., Ideno, T., Okubo, S., Takemura, K., 

Arakawa, R., Eguchi, Y., Murai, T., Okubo, Y., Kato, M., Ito, H., and Suhara, T. (2010). 
Dopamine D1 Receptors and Nonlinear Probability Weighting in Risky Choice Journal of 
Neuroscience 30, 16567-16572. 

 
Talairach, J. and Tournoux, P. Co-Planar Stereotaxis Atlas of the Human Brain: 3-D Proportional 

System: An Approach to Cerebral Imaging. New York, NY, USA: Thieme. (1988) 
 



Thaler, Richard (1981). Some Empirical Evidence on Dynamic Inconsistency. Economics Letters 8, pp. 
201-207 

 
Thaler, Richard H. and Shefrin, H.M. (1981) An Economic Theory of Self-Control. Journal of Political 

Economy Vol. 89, No. 2 
 
Thevarajah, D., Webb, R., Ferrall, C., & Dorris, M. C. 2009, “Modeling the value of strategic actions in 

the superior colliculus”, Frontiers in Behavioral Neuroscience, doi: 10.3389/neuro.08.057.2009  
 
Thibaut, John W. and Kelley, Harold H. The social psychology of groups. Oxford, England: John Wiley. 

(1959) 
 
Tobin, Henry, and A. W. Logue 1994. “Self-control across species (Columba livia, Homo sapiens, and 

Rattus norvegicus).” Journal of Comparative Psychology, Vol 108(2), Jun, 1994. pp. 126-133 
 
Tobler, P.N., Et. Al. (2008). Neuronal Distortions of Reward Probability without Choice. Journal of 

Neuroscience 28, 11703-11711. 
 
Tolhurst, D.J.; Movshon, J.A.; and Dean, A.F. (1983). The Statistical Reliability of Signals in Single 

Neurons in Cat and Monkey Visual Cortex. Vision Vol. 23, No. 8, pp. 775-785 
 
Tom, S.M., Fox, C.R., Trepel, C., and Poldrack, R.A. (2007). The Neural Basis of Loss Aversion in 

Decision-Making Under Risk. Science 315, 515-518. 
 
Tricomi, Elizabeth; Rangel, Antonio; Camerer, Colin F.; and O’Doherty, John P. (2010) Neural evidence 

for inequality-averse social preferences. Nature 463, pp. 1089-1091 
 
Tversky, Amos, and Daniel Kahneman. "Advances in prospect theory: Cumulative representation of 

uncertainty." Journal of Risk and uncertainty 5.4 (1992): 297-323. 
 
Urry, Heather L.; Nitschke, Jack B.; Dolski, Isa; Jackson, Daren C.; Dalton, Kim M.; Mueller, Corrina K.; 

Rosenkranz, Melissa A.; Ryff, Carol D.; Singer, Burton H. and Richard J. Davidson. “Making a 
Life Worth Living: Neural Correlates of Well-Being” Psychological Science, June 2004, vol. 15 
no. 6, 367-372 

 
Van Essen, David C.; Lewis, James W.; Drury, Heather A.; Hadjikhani, Nouchine; Tootell, Roger B.H.; 

Bakircioglu, Muge; and Miller, Michael I. (2001) Mapping visual cortex in monkeys and humans 
using surface-based atlases. Vision Research Vol. 41, Issues 10-11, pp. 1359-1378 

 
Villringer, A.; Planck J.; Hock, C.; Schleinkofer, L.; and Dirnagi, U. (1993) Near infrared spectroscopy 

(NIRS): A new tool to study hemodynamic changes during activation of brain function in human 
adults. Neuroscience Letters Volume 154, Issues 1-2, 101-104 

 
Visscher, Kristina M.; Miezin, Francis M.; Kelly, James E.; Buckner, Randy L.; Donaldson, David I.; 

McAvoy, Mark P.; Bhalodia, Vidya M.; and Petersen, Steven E. (2003). Mixed blocked/event-
related designs separate transient and sustained activity in fMRI. NeuroImage Vol. 19, Issue 4, 
pp. 1694-1708 

 
Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happe, F., Falkai, P., Maier, W., Shah, N.J., Fink, 

G.R. & Zilles, K. 2001, "Mind reading: neural mechanisms of theory of mind and self-perspective ", 
NeuroImage, vol. 14, no. 1, pp. 170-181. 

javascript:__doLinkPostBack('','mdb%7E%7Epdh%7C%7Cjdb%7E%7Epdhjnh%7C%7Css%7E%7EJN%20%22Journal%20of%20Comparative%20Psychology%22%7C%7Csl%7E%7Ejh','');


 
Vogeley, K., May, M., Ritzl, A., Falkai, P., Zilles, K. & Fink, G.R. 2004, "Neural correlates of first-

person perspective as one constituent of human self-consciousness" Journal of cognitive 
neuroscience, vol. 16, no. 5, pp. 817-827. 

 
Vul, Edward; Harris, Christine; Winkielman, Piotr; and Pashler, Harold (2009) Puzzingly High 

Correlations in fMRI Studies of Emotion, Personality, and Social Cognition. Perspectives on 
Psychological Science Vol. 4, No. 3, pp. 274-290 

 
Wang Y, Li K, Charikar M, Cohen JD & Turk-Browne NB (2013). What you find depends on how you 

look: Category selectivity in frontal cortex revealed by whole-brain correlation analysis. Journal of 
Vision Sciences. 

* This is an abstract at the moment, and will be replaced by more complete publication info by the time of 
proofs. 

 
Wang, J. T., Spezio, M., & Camerer, C. F. 2010. “Pinocchio's Pupil: Using Eyetracking and Pupil 

Dilation To Understand Truth Telling and Deception in Sender-Receiver Games”, American 
Economic Review, vol. 100, no. 3, pp. 984-1007. 

 
Wertenbroch, Klaus (1998). Consumption Self-Control by Rationing Purchase Quantities of Virtue and 

Vice. Marketing Science 17, No. 4, pp. 317-337 
 
White, Jonathan;  Keith Ericson, David Laibson, and Jonathan Cohen (2013) “Measuring Intertemporal 

Preferences: A Review,” working paper. 
 
Williams, D.S.; Detra, J.A.; Leigh, J.S.; and Koretsy, A.P. (1992) Magnetic resonance imaging 
of perfusion using spin inversion of arterial water. Proceedings of the National Academy of 
Sciences of the United States of America, vol. 89 no. 1, 212-216 
Woods, Roger P.; Grafton, Scott T.; Watson, John D.G.; Sicotte, Nancy L.; Mazziotta, John C. (1998) 

Automated Image Registration: II. Intersubject Validation of Linear and Nonlinear Models. 
Journal of Computer Assisted Tomography Vol. 22, Issue 1, pp. 153-165 

 
Wu, S.W., Delgado, M.R., and Maloney, L.T. (2009). Economic decision-making compared with an 

equivalent motor task. Proceeding of National Academy of Sciences 196, 6088-6093. 
 
Yacubian, J., Glascher, J., Schroeder, K., Sommer, T., Braus, D.F., and Buchel, C. (2006). Dissociable 

Systems for Gain- and Loss-Related Value Predictions and Errors of Prediction in the Human 
Brain. Journal of Neuroscience 26, 9530 –9537. 

 
Yamada, Makiko; Camerer, Colin F.; Fujie, Saori; Kat, Motoichiro; Matsuda, Tetsuya; Takano, 

Harumasa; Ito, Hiroshi; Suhara, Tetsuya; and Takahashi, Hidehiko (2012). Neural circuits in the 
brain that are activated when mitigating criminal sentences. Nature Communications Vol. 3, No. 
759 

 
Yoshida, W., Dolan, R.J. & Friston, K.J. 2008, "Game theory of mind ", PLoS computational biology, 

vol. 4, no. 12, pp. e1000254.  
 
Zauberman, Gal; Kim, B. Kyu; Malkoc, Selin A.; and Bettman, James R. (2009). Discounting 
Time and Time Discounting: Subjective Time Perception and Intertemporal Preferences. Journal 
of Marketing Research 46(4), pp. 543-556. 


	The Cellular Structure of the Brain
	From Neurons to Networks
	2:  Functional MRI (fMRI): A Window into the Working Brain
	Functional MRI and the BOLD signal
	Design considerations
	Image Analysis

	Ashraf, Nava; Karlan, Dean; and Yin, Wesley (2006). “Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines.” Quarterly Journal of Economics. Volume 121 Issue (Month): 2 (May) pp. 635-672

